ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13707
  4. Cited By
Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
  Influence Functions

Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions

20 June 2020
Ahmed Alaa
M. Schaar
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions"

9 / 9 papers shown
Title
Copula Conformal Prediction for Multi-step Time Series Forecasting
Copula Conformal Prediction for Multi-step Time Series Forecasting
S. Sun
Rose Yu
AI4TS
37
22
0
06 Dec 2022
What's Behind the Mask: Estimating Uncertainty in Image-to-Image
  Problems
What's Behind the Mask: Estimating Uncertainty in Image-to-Image Problems
Gilad Kutiel
Regev Cohen
Michael Elad
Daniel Freedman
UQCV
34
5
0
28 Nov 2022
Uncertainty Quantification with Pre-trained Language Models: A
  Large-Scale Empirical Analysis
Uncertainty Quantification with Pre-trained Language Models: A Large-Scale Empirical Analysis
Yuxin Xiao
Paul Pu Liang
Umang Bhatt
Willie Neiswanger
Ruslan Salakhutdinov
Louis-Philippe Morency
175
86
0
10 Oct 2022
Multi-robot Mission Planning in Dynamic Semantic Environments
Multi-robot Mission Planning in Dynamic Semantic Environments
Samarth Kalluraya
George J. Pappas
Y. Kantaros
42
21
0
13 Sep 2022
Conformal Methods for Quantifying Uncertainty in Spatiotemporal Data: A
  Survey
Conformal Methods for Quantifying Uncertainty in Spatiotemporal Data: A Survey
S. Sun
AI4CE
38
10
0
08 Sep 2022
Quantifying Epistemic Uncertainty in Deep Learning
Quantifying Epistemic Uncertainty in Deep Learning
Ziyi Huang
H. Lam
Haofeng Zhang
UQCV
BDL
UD
PER
24
12
0
23 Oct 2021
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
Dongxian Wu
Liyao (Mars) Gao
X. Xiong
Matteo Chinazzi
Alessandro Vespignani
Yi Ma
Rose Yu
AI4TS
13
68
0
25 May 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1