ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13057
  4. Cited By
PAC-Bayes Analysis Beyond the Usual Bounds

PAC-Bayes Analysis Beyond the Usual Bounds

23 June 2020
Omar Rivasplata
Ilja Kuzborskij
Csaba Szepesvári
John Shawe-Taylor
ArXivPDFHTML

Papers citing "PAC-Bayes Analysis Beyond the Usual Bounds"

50 / 58 papers shown
Title
Generalization Guarantees for Multi-View Representation Learning and Application to Regularization via Gaussian Product Mixture Prior
Generalization Guarantees for Multi-View Representation Learning and Application to Regularization via Gaussian Product Mixture Prior
Milad Sefidgaran
Abdellatif Zaidi
Piotr Krasnowski
44
0
0
25 Apr 2025
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Milad Sefidgaran
A. Zaidi
Piotr Krasnowski
88
1
0
21 Feb 2025
Generalization Error of the Tilted Empirical Risk
Generalization Error of the Tilted Empirical Risk
Gholamali Aminian
Amir R. Asadi
Tian Li
Ahmad Beirami
G. Reinert
Samuel N. Cohen
21
1
0
28 Sep 2024
Forgetting, Ignorance or Myopia: Revisiting Key Challenges in Online
  Continual Learning
Forgetting, Ignorance or Myopia: Revisiting Key Challenges in Online Continual Learning
Xinrui Wang
Chuanxing Geng
Wenhai Wan
Shao-yuan Li
Songcan Chen
CLL
37
2
0
28 Sep 2024
Generalization of Hamiltonian algorithms
Generalization of Hamiltonian algorithms
Andreas Maurer
16
1
0
23 May 2024
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Benjamin Dupuis
Paul Viallard
George Deligiannidis
Umut Simsekli
40
2
0
26 Apr 2024
A note on generalization bounds for losses with finite moments
A note on generalization bounds for losses with finite moments
Borja Rodríguez Gálvez
Omar Rivasplata
Ragnar Thobaben
Mikael Skoglund
26
0
0
25 Mar 2024
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization
  Bounds with Complexity Measures
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures
Paul Viallard
Rémi Emonet
Amaury Habrard
Emilie Morvant
Valentina Zantedeschi
33
3
0
19 Feb 2024
Better-than-KL PAC-Bayes Bounds
Better-than-KL PAC-Bayes Bounds
Ilja Kuzborskij
Kwang-Sung Jun
Yulian Wu
Kyoungseok Jang
Francesco Orabona
FedML
30
2
0
14 Feb 2024
A PAC-Bayesian Link Between Generalisation and Flat Minima
A PAC-Bayesian Link Between Generalisation and Flat Minima
Maxime Haddouche
Paul Viallard
Umut Simsekli
Benjamin Guedj
37
3
0
13 Feb 2024
Tighter Generalisation Bounds via Interpolation
Tighter Generalisation Bounds via Interpolation
Paul Viallard
Maxime Haddouche
Umut Simsekli
Benjamin Guedj
11
3
0
07 Feb 2024
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Mahrokh Ghoddousi Boroujeni
Andreas Krause
Giancarlo Ferrari-Trecate
FedML
32
3
0
16 Jan 2024
PAC-Bayes-Chernoff bounds for unbounded losses
PAC-Bayes-Chernoff bounds for unbounded losses
Ioar Casado
Luis A. Ortega
A. Masegosa
Aritz Pérez Martínez
22
6
0
02 Jan 2024
Comparing Comparators in Generalization Bounds
Comparing Comparators in Generalization Bounds
Fredrik Hellström
Benjamin Guedj
23
4
0
16 Oct 2023
Statistical Guarantees for Variational Autoencoders using PAC-Bayesian
  Theory
Statistical Guarantees for Variational Autoencoders using PAC-Bayesian Theory
S. Mbacke
Florence Clerc
Pascal Germain
DRL
20
9
0
07 Oct 2023
Wasserstein PAC-Bayes Learning: Exploiting Optimisation Guarantees to
  Explain Generalisation
Wasserstein PAC-Bayes Learning: Exploiting Optimisation Guarantees to Explain Generalisation
Maxime Haddouche
Benjamin Guedj
25
0
0
14 Apr 2023
Practicality of generalization guarantees for unsupervised domain
  adaptation with neural networks
Practicality of generalization guarantees for unsupervised domain adaptation with neural networks
Adam Breitholtz
Fredrik D. Johansson
OOD
21
1
0
15 Mar 2023
PAC-Bayesian Generalization Bounds for Adversarial Generative Models
PAC-Bayesian Generalization Bounds for Adversarial Generative Models
S. Mbacke
Florence Clerc
Pascal Germain
24
8
0
17 Feb 2023
A unified recipe for deriving (time-uniform) PAC-Bayes bounds
A unified recipe for deriving (time-uniform) PAC-Bayes bounds
Ben Chugg
Hongjian Wang
Aaditya Ramdas
19
24
0
07 Feb 2023
PAC-Bayes Bounds for Bandit Problems: A Survey and Experimental
  Comparison
PAC-Bayes Bounds for Bandit Problems: A Survey and Experimental Comparison
H. Flynn
David Reeb
M. Kandemir
Jan Peters
OffRL
11
7
0
29 Nov 2022
PAC-Bayesian Learning of Optimization Algorithms
PAC-Bayesian Learning of Optimization Algorithms
Michael Sucker
Peter Ochs
16
4
0
20 Oct 2022
A New Family of Generalization Bounds Using Samplewise Evaluated CMI
A New Family of Generalization Bounds Using Samplewise Evaluated CMI
Fredrik Hellström
G. Durisi
30
22
0
12 Oct 2022
PAC-Bayes Generalisation Bounds for Heavy-Tailed Losses through
  Supermartingales
PAC-Bayes Generalisation Bounds for Heavy-Tailed Losses through Supermartingales
Maxime Haddouche
Benjamin Guedj
51
20
0
03 Oct 2022
Generalisation under gradient descent via deterministic PAC-Bayes
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
26
4
0
06 Sep 2022
Integral Probability Metrics PAC-Bayes Bounds
Integral Probability Metrics PAC-Bayes Bounds
Ron Amit
Baruch Epstein
Shay Moran
Ron Meir
21
18
0
01 Jul 2022
A General framework for PAC-Bayes Bounds for Meta-Learning
A General framework for PAC-Bayes Bounds for Meta-Learning
A. Rezazadeh
AI4CE
21
4
0
11 Jun 2022
Online PAC-Bayes Learning
Online PAC-Bayes Learning
Maxime Haddouche
Benjamin Guedj
16
21
0
31 May 2022
Formal limitations of sample-wise information-theoretic generalization
  bounds
Formal limitations of sample-wise information-theoretic generalization bounds
Hrayr Harutyunyan
Greg Ver Steeg
Aram Galstyan
19
2
0
13 May 2022
Investigating Generalization by Controlling Normalized Margin
Investigating Generalization by Controlling Normalized Margin
Alexander R. Farhang
Jeremy Bernstein
Kushal Tirumala
Yang Liu
Yisong Yue
23
6
0
08 May 2022
On PAC-Bayesian reconstruction guarantees for VAEs
On PAC-Bayesian reconstruction guarantees for VAEs
Badr-Eddine Chérief-Abdellatif
Yuyang Shi
Arnaud Doucet
Benjamin Guedj
DRL
45
17
0
23 Feb 2022
From Optimization Dynamics to Generalization Bounds via Łojasiewicz
  Gradient Inequality
From Optimization Dynamics to Generalization Bounds via Łojasiewicz Gradient Inequality
Fusheng Liu
Haizhao Yang
Soufiane Hayou
Qianxiao Li
AI4CE
11
2
0
22 Feb 2022
Towards Data-Algorithm Dependent Generalization: a Case Study on
  Overparameterized Linear Regression
Towards Data-Algorithm Dependent Generalization: a Case Study on Overparameterized Linear Regression
Jing Xu
Jiaye Teng
Yang Yuan
Andrew Chi-Chih Yao
21
1
0
12 Feb 2022
Weight Expansion: A New Perspective on Dropout and Generalization
Weight Expansion: A New Perspective on Dropout and Generalization
Gao Jin
Xinping Yi
Pengfei Yang
Lijun Zhang
S. Schewe
Xiaowei Huang
29
5
0
23 Jan 2022
Progress in Self-Certified Neural Networks
Progress in Self-Certified Neural Networks
Maria Perez-Ortiz
Omar Rivasplata
E. Parrado-Hernández
Benjamin Guedj
John Shawe-Taylor
11
13
0
15 Nov 2021
User-friendly introduction to PAC-Bayes bounds
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
42
196
0
21 Oct 2021
Kernel Interpolation as a Bayes Point Machine
Kernel Interpolation as a Bayes Point Machine
Jeremy Bernstein
Alexander R. Farhang
Yisong Yue
BDL
24
4
0
08 Oct 2021
Learning PAC-Bayes Priors for Probabilistic Neural Networks
Learning PAC-Bayes Priors for Probabilistic Neural Networks
Maria Perez-Ortiz
Omar Rivasplata
Benjamin Guedj
M. Gleeson
Jingyu Zhang
John Shawe-Taylor
M. Bober
J. Kittler
UQCV
51
31
0
21 Sep 2021
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes
  Generalization Bound
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound
Valentina Zantedeschi
Paul Viallard
Emilie Morvant
Rémi Emonet
Amaury Habrard
Pascal Germain
Benjamin Guedj
FedML
BDL
17
16
0
23 Jun 2021
How Tight Can PAC-Bayes be in the Small Data Regime?
How Tight Can PAC-Bayes be in the Small Data Regime?
Andrew Y. K. Foong
W. Bruinsma
David R. Burt
Richard E. Turner
17
20
0
07 Jun 2021
A unified PAC-Bayesian framework for machine unlearning via information
  risk minimization
A unified PAC-Bayesian framework for machine unlearning via information risk minimization
Sharu Theresa Jose
Osvaldo Simeone
MU
11
7
0
01 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Information Complexity and Generalization Bounds
Information Complexity and Generalization Bounds
P. Banerjee
Guido Montúfar
13
14
0
04 May 2021
Generalization Bounds for Meta-Learning via PAC-Bayes and Uniform
  Stability
Generalization Bounds for Meta-Learning via PAC-Bayes and Uniform Stability
Alec Farid
Anirudha Majumdar
21
34
0
12 Feb 2021
Bayesian Neural Network Priors Revisited
Bayesian Neural Network Priors Revisited
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard E. Turner
Mark van der Wilk
Laurence Aitchison
BDL
UQCV
59
137
0
12 Feb 2021
Information-Theoretic Bounds on the Moments of the Generalization Error
  of Learning Algorithms
Information-Theoretic Bounds on the Moments of the Generalization Error of Learning Algorithms
Gholamali Aminian
Laura Toni
M. Rodrigues
62
16
0
03 Feb 2021
A note on a confidence bound of Kuzborskij and Szepesvári
A note on a confidence bound of Kuzborskij and Szepesvári
Omar Rivasplata
9
0
0
12 Jan 2021
Upper and Lower Bounds on the Performance of Kernel PCA
Upper and Lower Bounds on the Performance of Kernel PCA
Maxime Haddouche
Benjamin Guedj
John Shawe-Taylor
19
4
0
18 Dec 2020
Generalization bounds for deep learning
Generalization bounds for deep learning
Guillermo Valle Pérez
A. Louis
BDL
11
44
0
07 Dec 2020
Risk-Monotonicity in Statistical Learning
Risk-Monotonicity in Statistical Learning
Zakaria Mhammedi
22
7
0
28 Nov 2020
Non-exponentially weighted aggregation: regret bounds for unbounded loss
  functions
Non-exponentially weighted aggregation: regret bounds for unbounded loss functions
Pierre Alquier
17
18
0
07 Sep 2020
12
Next