ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10562
  4. Cited By
Uncertainty in Gradient Boosting via Ensembles

Uncertainty in Gradient Boosting via Ensembles

18 June 2020
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
    UQCV
ArXivPDFHTML

Papers citing "Uncertainty in Gradient Boosting via Ensembles"

9 / 59 papers shown
Title
Ensemble Distribution Distillation
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark Gales
UQCV
67
236
0
30 Apr 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
84
808
0
07 Feb 2019
Understanding Measures of Uncertainty for Adversarial Example Detection
Understanding Measures of Uncertainty for Adversarial Example Detection
Lewis Smith
Y. Gal
UQCV
88
362
0
22 Mar 2018
Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and
  Risk-sensitive Learning
Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi-Velez
Steffen Udluft
UQCV
PER
BDL
UD
65
27
0
19 Oct 2017
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry
  and Semantics
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Alex Kendall
Y. Gal
R. Cipolla
3DH
272
3,122
0
19 May 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
73
521
0
13 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
832
5,821
0
05 Dec 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
158
3,454
0
07 Oct 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
821
9,318
0
06 Jun 2015
Previous
12