Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.09319
Cited By
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges
16 June 2020
L. Swiler
Mamikon A. Gulian
A. Frankel
Cosmin Safta
J. Jakeman
GP
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges"
46 / 46 papers shown
Title
Stochastic Process Learning via Operator Flow Matching
Yaozhong Shi
Zachary E. Ross
D. Asimaki
Kamyar Azizzadenesheli
62
2
0
10 Jan 2025
Measurements with Noise: Bayesian Optimization for Co-optimizing Noise and Property Discovery in Automated Experiments
Boris N. Slautin
Yu Liu
Jan Dec
Vladimir V. Shvartsman
Doru C. Lupascu
M. Ziatdinov
Sergei V. Kalinin
42
0
0
03 Oct 2024
SPINEX-TimeSeries: Similarity-based Predictions with Explainable Neighbors Exploration for Time Series and Forecasting Problems
Ahmed Z Naser
M. Z. Naser
AI4TS
21
0
0
04 Aug 2024
Multi-physics Simulation Guided Generative Diffusion Models with Applications in Fluid and Heat Dynamics
Naichen Shi
Hao Yan
Shenghan Guo
Raed Al Kontar
DiffM
AI4CE
43
0
0
25 Jul 2024
Gaussian Measures Conditioned on Nonlinear Observations: Consistency, MAP Estimators, and Simulation
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
79
1
0
21 May 2024
Neural Operator induced Gaussian Process framework for probabilistic solution of parametric partial differential equations
Sawan Kumar
R. Nayek
Souvik Chakraborty
45
2
0
24 Apr 2024
Universal Functional Regression with Neural Operator Flows
Yaozhong Shi
Angela F. Gao
Zachary E. Ross
Kamyar Azizzadenesheli
50
4
0
03 Apr 2024
Gaussian Process Regression with Soft Inequality and Monotonicity Constraints
Didem Kochan
Xiu Yang
29
0
0
03 Apr 2024
Physics-constrained polynomial chaos expansion for scientific machine learning and uncertainty quantification
Himanshu Sharma
Lukávs Novák
Michael D. Shields
AI4CE
55
4
0
23 Feb 2024
PINN-BO: A Black-box Optimization Algorithm using Physics-Informed Neural Networks
Dat Phan-Trong
Hung The Tran
A. Shilton
Sunil R. Gupta
49
0
0
05 Feb 2024
Asymptotic properties of Vecchia approximation for Gaussian processes
Myeongjong Kang
Florian Schafer
J. Guinness
Matthias Katzfuss
40
5
0
29 Jan 2024
Deep Bayesian Reinforcement Learning for Spacecraft Proximity Maneuvers and Docking
Desong Du
Naiming Qi
Yanfang Liu
Wei Pan
16
0
0
07 Nov 2023
Extreme sparsification of physics-augmented neural networks for interpretable model discovery in mechanics
J. Fuhg
Reese E. Jones
N. Bouklas
AI4CE
39
23
0
05 Oct 2023
Enhanced Human-Robot Collaboration using Constrained Probabilistic Human-Motion Prediction
Aadi Kothari
Tony Tohme
Xiaotong Zhang
Kamal Youcef-Toumi
3DH
45
7
0
05 Oct 2023
A spectrum of physics-informed Gaussian processes for regression in engineering
E. Cross
T. Rogers
D. J. Pitchforth
S. Gibson
Matthew R. Jones
29
8
0
19 Sep 2023
Physics-Informed Polynomial Chaos Expansions
Lukávs Novák
Himanshu Sharma
Michael D. Shields
30
16
0
04 Sep 2023
Index-aware learning of circuits
I. C. Garcia
Peter Förster
Lennart Jansen
W. Schilders
Sebastian Schöps
11
0
0
02 Sep 2023
Learning thermodynamically constrained equations of state with uncertainty
Himanshu Sharma
J. Gaffney
Dimitrios Tsapetis
Michael D. Shields
16
5
0
29 Jun 2023
SEAL: Simultaneous Exploration and Localization in Multi-Robot Systems
Ehsan Latif
Ramviyas Parasuraman
17
9
0
22 Jun 2023
A machine learning approach to the prediction of heat-transfer coefficients in micro-channels
Tullio Traverso
F. Coletti
Luca Magri
T. Karayiannis
Omar K. Matar
8
0
0
28 May 2023
Gaussian Processes with State-Dependent Noise for Stochastic Control
Marcel Menner
K. Berntorp
24
3
0
25 May 2023
Stochastic PDE representation of random fields for large-scale Gaussian process regression and statistical finite element analysis
Kim Jie Koh
F. Cirak
AI4CE
34
9
0
23 May 2023
UQpy v4.1: Uncertainty Quantification with Python
Dimitrios Tsapetis
Michael D. Shields
Dimitris G. Giovanis
Audrey Olivier
Lukás Novák
...
Mohit Chauhan
Katiana Kontolati
Lohit Vandanapu
Dimitrios Loukrezis
Michael Gardner
GP
29
11
0
16 May 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
39
17
0
08 May 2023
Stochastic Cell Transmission Models of Traffic Networks
Zachary Feinstein
M. Kleiber
Stefan Weber
11
1
0
23 Apr 2023
Parameter Inference based on Gaussian Processes Informed by Nonlinear Partial Differential Equations
Zhao-Xia Li
Shih-Feng Yang
Jeff Wu
30
2
0
22 Dec 2022
A correlated pseudo-marginal approach to doubly intractable problems
Yu Yang
M. Quiroz
Robert Kohn
Scott A. Sisson
26
1
0
06 Oct 2022
Physically Meaningful Uncertainty Quantification in Probabilistic Wind Turbine Power Curve Models as a Damage Sensitive Feature
J. H. Mclean
Matthew R. Jones
Brandon J. O'Connell
Eoghan Maguire
T. Rogers
32
6
0
30 Sep 2022
A connection between probability, physics and neural networks
Sascha Ranftl
PINN
22
9
0
26 Sep 2022
Monotonic Gaussian process for physics-constrained machine learning with materials science applications
Anh Tran
Kathryn A. Maupin
T. Rodgers
PINN
AI4CE
31
6
0
31 Aug 2022
Constraining Gaussian processes for physics-informed acoustic emission mapping
Matthew R. Jones
T. Rogers
E. Cross
AI4CE
45
16
0
03 Jun 2022
Prediction for Distributional Outcomes in High-Performance Computing I/O Variability
Li Xu
Yili Hong
M. Morris
K. Cameron
17
0
0
19 May 2022
Data-aided Underwater Acoustic Ray Propagation Modeling
Kexin Li
M. Chitre
33
12
0
12 May 2022
Discrepancy Modeling Framework: Learning missing physics, modeling systematic residuals, and disambiguating between deterministic and random effects
Megan R. Ebers
K. Steele
J. Nathan Kutz
54
15
0
10 Mar 2022
Incorporating Sum Constraints into Multitask Gaussian Processes
Philipp Pilar
Carl Jidling
Thomas B. Schon
Niklas Wahlström
TPM
26
3
0
03 Feb 2022
A Kernel-Based Approach for Modelling Gaussian Processes with Functional Information
J. Nicholson
P. Kiessler
D. Brown
GP
19
3
0
26 Jan 2022
Structure-Preserving Learning Using Gaussian Processes and Variational Integrators
Jan Brüdigam
Martin Schuck
A. Capone
Stefan Sosnowski
Sandra Hirche
19
4
0
10 Dec 2021
Stochastic Processes Under Linear Differential Constraints : Application to Gaussian Process Regression for the 3 Dimensional Free Space Wave Equation
Iain Henderson
P. Noble
O. Roustant
26
1
0
23 Nov 2021
Practical, Provably-Correct Interactive Learning in the Realizable Setting: The Power of True Believers
Julian Katz-Samuels
Blake Mason
Kevin Jamieson
R. Nowak
16
0
0
09 Nov 2021
Hierarchical Non-Stationary Temporal Gaussian Processes With
L
1
L^1
L
1
-Regularization
Zheng Zhao
Rui Gao
Simo Särkkä
31
0
0
20 May 2021
Posterior contraction for deep Gaussian process priors
G. Finocchio
Johannes Schmidt-Hieber
63
11
0
16 May 2021
Solving and Learning Nonlinear PDEs with Gaussian Processes
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
42
153
0
24 Mar 2021
Advanced Stationary and Non-Stationary Kernel Designs for Domain-Aware Gaussian Processes
M. Noack
J. Sethian
GP
6
22
0
05 Feb 2021
Gaussian Process Regression constrained by Boundary Value Problems
Mamikon A. Gulian
A. Frankel
L. Swiler
11
25
0
22 Dec 2020
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
91
392
0
10 Mar 2020
Local Gaussian process approximation for large computer experiments
R. Gramacy
D. Apley
129
392
0
02 Mar 2013
1