ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.08558
  4. Cited By
Learning Diverse and Discriminative Representations via the Principle of
  Maximal Coding Rate Reduction

Learning Diverse and Discriminative Representations via the Principle of Maximal Coding Rate Reduction

15 June 2020
Yaodong Yu
Kwan Ho Ryan Chan
Chong You
Chaobing Song
Yi-An Ma
    SSL
ArXiv (abs)PDFHTML

Papers citing "Learning Diverse and Discriminative Representations via the Principle of Maximal Coding Rate Reduction"

39 / 39 papers shown
Title
Simplifying DINO via Coding Rate Regularization
Simplifying DINO via Coding Rate Regularization
Ziyang Wu
Jingyuan Zhang
Druv Pai
Xinze Wang
Chandan Singh
Jianwei Yang
Jianfeng Gao
Yi-An Ma
509
1
0
17 Feb 2025
Many Perception Tasks are Highly Redundant Functions of their Input Data
Many Perception Tasks are Highly Redundant Functions of their Input Data
Rahul Ramesh
Anthony Bisulco
Ronald W. DiTullio
Linran Wei
Vijay Balasubramanian
Kostas Daniilidis
Pratik Chaudhari
100
2
0
18 Jul 2024
Latent Intrinsics Emerge from Training to Relight
Latent Intrinsics Emerge from Training to Relight
Xiao Zhang
William Gao
Seemandhar Jain
Michael Maire
David.A.Forsyth
Anand Bhattad
89
4
0
31 May 2024
A Critique of Self-Expressive Deep Subspace Clustering
A Critique of Self-Expressive Deep Subspace Clustering
B. Haeffele
Chong You
René Vidal
67
28
0
08 Oct 2020
Deep Isometric Learning for Visual Recognition
Deep Isometric Learning for Visual Recognition
Haozhi Qi
Chong You
Xinyu Wang
Yi-An Ma
Jitendra Malik
VLM
76
55
0
30 Jun 2020
PCAAE: Principal Component Analysis Autoencoder for organising the
  latent space of generative networks
PCAAE: Principal Component Analysis Autoencoder for organising the latent space of generative networks
Chi-Hieu Pham
Saïd Ladjal
A. Newson
DRL
79
32
0
14 Jun 2020
Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood
  Estimation
Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation
Ke Li
Shichong Peng
Tianhao Zhang
Jitendra Malik
GAN
41
23
0
07 Apr 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
541
42,591
0
03 Dec 2019
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
213
12,124
0
13 Nov 2019
A Rate-Distortion Framework for Explaining Neural Network Decisions
A Rate-Distortion Framework for Explaining Neural Network Decisions
Jan Macdonald
S. Wäldchen
Sascha Hauch
Gitta Kutyniok
51
39
0
27 May 2019
Self-Supervised Convolutional Subspace Clustering Network
Self-Supervised Convolutional Subspace Clustering Network
Junjian Zhang
Chun-Guang Li
Chong You
Xianbiao Qi
Honggang Zhang
Jun Guo
Zhouchen Lin
SSL
76
145
0
01 May 2019
Neural Collaborative Subspace Clustering
Neural Collaborative Subspace Clustering
Tong Zhang
Pan Ji
Mehrtash Harandi
Wen-bing Huang
Hongdong Li
32
72
0
24 Apr 2019
Deep Comprehensive Correlation Mining for Image Clustering
Deep Comprehensive Correlation Mining for Image Clustering
Jianlong Wu
Keyu Long
Fei Wang
Chao Qian
Cheng Li
Zhouchen Lin
H. Zha
49
161
0
15 Apr 2019
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLTAI4CE
220
316
0
05 Nov 2018
Scalable Deep $k$-Subspace Clustering
Scalable Deep kkk-Subspace Clustering
Tong Zhang
Pan Ji
Mehrtash Harandi
Leonid Sigal
Ian Reid
70
35
0
02 Nov 2018
Caveats for information bottleneck in deterministic scenarios
Caveats for information bottleneck in deterministic scenarios
Artemy Kolchinsky
Brendan D. Tracey
S. Kuyk
80
83
0
23 Aug 2018
Learning deep representations by mutual information estimation and
  maximization
Learning deep representations by mutual information estimation and maximization
R. Devon Hjelm
A. Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
SSLDRL
337
2,672
0
20 Aug 2018
Invariant Information Clustering for Unsupervised Image Classification
  and Segmentation
Invariant Information Clustering for Unsupervised Image Classification and Segmentation
Xu Ji
João F. Henriques
Andrea Vedaldi
SSLVLM
90
852
0
17 Jul 2018
Representation Learning with Contrastive Predictive Coding
Representation Learning with Contrastive Predictive Coding
Aaron van den Oord
Yazhe Li
Oriol Vinyals
DRLSSL
351
10,356
0
10 Jul 2018
Unsupervised Feature Learning via Non-Parametric Instance-level
  Discrimination
Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination
Zhirong Wu
Yuanjun Xiong
Stella X. Yu
Dahua Lin
SSL
182
3,466
0
05 May 2018
Large Margin Deep Networks for Classification
Large Margin Deep Networks for Classification
Gamaleldin F. Elsayed
Dilip Krishnan
H. Mobahi
Kevin Regan
Samy Bengio
MQ
56
284
0
15 Mar 2018
OLÉ: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for
  Deep Learning
OLÉ: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep Learning
José Lezama
Qiang Qiu
Pablo Musé
Guillermo Sapiro
67
78
0
05 Dec 2017
A learning problem that is independent of the set theory ZFC axioms
A learning problem that is independent of the set theory ZFC axioms
Shai Ben-David
P. Hrubes
Shay Moran
Amir Shpilka
Amir Yehudayoff
54
15
0
14 Nov 2017
Deep Sparse Subspace Clustering
Deep Sparse Subspace Clustering
Xi Peng
Jiashi Feng
Shijie Xiao
Jiwen Lu
Zhang Yi
Shuicheng Yan
51
22
0
25 Sep 2017
Deep Subspace Clustering Networks
Deep Subspace Clustering Networks
Pan Ji
Tong Zhang
Hongdong Li
Mathieu Salzmann
Ian Reid
SSL
58
156
0
08 Sep 2017
Learning Discrete Representations via Information Maximizing
  Self-Augmented Training
Learning Discrete Representations via Information Maximizing Self-Augmented Training
Weihua Hu
Takeru Miyato
Seiya Tokui
Eiichi Matsumoto
Masashi Sugiyama
83
452
0
28 Feb 2017
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
522
10,347
0
16 Nov 2016
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
348
4,635
0
10 Nov 2016
Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace
  Clustering
Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering
Chong You
Chun-Guang Li
Daniel P. Robinson
René Vidal
73
243
0
09 May 2016
Joint Unsupervised Learning of Deep Representations and Image Clusters
Joint Unsupervised Learning of Deep Representations and Image Clusters
Jianwei Yang
Devi Parikh
Dhruv Batra
SSL
57
818
0
13 Apr 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
171
1,945
0
24 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Unsupervised Deep Embedding for Clustering Analysis
Unsupervised Deep Embedding for Clustering Analysis
Junyuan Xie
Ross B. Girshick
Ali Farhadi
SSL
100
2,880
0
19 Nov 2015
LogDet Rank Minimization with Application to Subspace Clustering
LogDet Rank Minimization with Application to Subspace Clustering
Zhao Kang
Chong Peng
Jie Cheng
Q. Cheng
48
46
0
03 Jul 2015
Deep Learning and the Information Bottleneck Principle
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
214
1,592
0
09 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
465
43,341
0
11 Feb 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,508
0
04 Sep 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
595
15,902
0
12 Nov 2013
Multiclass learnability and the ERM principle
Multiclass learnability and the ERM principle
Amit Daniely
Sivan Sabato
Shai Ben-David
Shai Shalev-Shwartz
158
150
0
13 Aug 2013
1