Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.08138
Cited By
Learning Bounds for Risk-sensitive Learning
15 June 2020
Jaeho Lee
Sejun Park
Jinwoo Shin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Bounds for Risk-sensitive Learning"
33 / 33 papers shown
Title
Robust Federated Learning with Global Sensitivity Estimation for Financial Risk Management
Lei Zhao
Lin Cai
Wu-Sheng Lu
FedML
81
0
0
24 Feb 2025
Generalization Error of the Tilted Empirical Risk
Gholamali Aminian
Amir R. Asadi
Tian Li
Ahmad Beirami
G. Reinert
Samuel N. Cohen
21
1
0
28 Sep 2024
Making Robust Generalizers Less Rigid with Soft Ascent-Descent
Matthew J. Holland
Toma Hamada
OOD
28
0
0
07 Aug 2024
Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning
Dake Zhang
Boxiang Lyu
Shuang Qiu
Mladen Kolar
Tong Zhang
OffRL
30
0
0
10 Jul 2024
Concentration Bounds for Optimized Certainty Equivalent Risk Estimation
Ayon Ghosh
Prashanth L.A.
Krishna Jagannathan
23
0
0
31 May 2024
Towards Efficient Risk-Sensitive Policy Gradient: An Iteration Complexity Analysis
Rui Liu
Erfaun Noorani
Pratap Tokekar
John S. Baras
23
1
0
13 Mar 2024
Criterion Collapse and Loss Distribution Control
Matthew J. Holland
26
2
0
15 Feb 2024
Understanding Contrastive Learning via Distributionally Robust Optimization
Junkang Wu
Jiawei Chen
Jiancan Wu
Wentao Shi
Xiang Wang
Xiangnan He
24
24
0
17 Oct 2023
Revisiting adversarial training for the worst-performing class
Thomas Pethick
Grigorios G. Chrysos
V. Cevher
16
6
0
17 Feb 2023
Regret Bounds for Markov Decision Processes with Recursive Optimized Certainty Equivalents
Wenkun Xu
Xuefeng Gao
X. He
20
10
0
30 Jan 2023
Robust variance-regularized risk minimization with concomitant scaling
Matthew J. Holland
28
1
0
27 Jan 2023
Quantile Risk Control: A Flexible Framework for Bounding the Probability of High-Loss Predictions
Jake C. Snell
Thomas P. Zollo
Zhun Deng
T. Pitassi
R. Zemel
24
8
0
27 Dec 2022
Stochastic Optimization for Spectral Risk Measures
Ronak R. Mehta
Vincent Roulet
Krishna Pillutla
Lang Liu
Zaïd Harchaoui
32
6
0
10 Dec 2022
Probable Domain Generalization via Quantile Risk Minimization
Cian Eastwood
Alexander Robey
Shashank Singh
Julius von Kügelgen
Hamed Hassani
George J. Pappas
Bernhard Schölkopf
OOD
27
61
0
20 Jul 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
30
32
0
18 Jul 2022
Supervised Learning with General Risk Functionals
Liu Leqi
Audrey Huang
Zachary Chase Lipton
Kamyar Azizzadenesheli
11
5
0
27 Jun 2022
Flexible risk design using bi-directional dispersion
Matthew J. Holland
32
5
0
28 Mar 2022
Almost Optimal Variance-Constrained Best Arm Identification
Yunlong Hou
Vincent Y. F. Tan
Zixin Zhong
16
10
0
25 Jan 2022
Online Estimation and Optimization of Utility-Based Shortfall Risk
Vishwajit Hegde
Arvind S. Menon
L. A. Prashanth
Krishna Jagannathan
19
2
0
16 Nov 2021
Neural Network Pruning Through Constrained Reinforcement Learning
Shehryar Malik
Muhammad Umair Haider
O. Iqbal
M. Taj
24
0
0
16 Oct 2021
A Survey of Learning Criteria Going Beyond the Usual Risk
Matthew J. Holland
Kazuki Tanabe
FaML
24
4
0
11 Oct 2021
Risk-Aware Learning for Scalable Voltage Optimization in Distribution Grids
Shanny Lin
Shaohui Liu
Hao Zhu
15
9
0
04 Oct 2021
A Unifying Theory of Thompson Sampling for Continuous Risk-Averse Bandits
Joel Q. L. Chang
Vincent Y. F. Tan
24
13
0
25 Aug 2021
DORO: Distributional and Outlier Robust Optimization
Runtian Zhai
Chen Dan
J. Zico Kolter
Pradeep Ravikumar
12
58
0
11 Jun 2021
Thompson Sampling for Gaussian Entropic Risk Bandits
Ming Liang Ang
Eloise Y. Y. Lim
Joel Q. L. Chang
8
1
0
14 May 2021
Spectral risk-based learning using unbounded losses
Matthew J. Holland
El Mehdi Haress
16
10
0
11 May 2021
Off-Policy Risk Assessment in Contextual Bandits
Audrey Huang
Liu Leqi
Zachary Chase Lipton
Kamyar Azizzadenesheli
OffRL
27
36
0
18 Apr 2021
Noisy Linear Convergence of Stochastic Gradient Descent for CV@R Statistical Learning under Polyak-Łojasiewicz Conditions
Dionysios S. Kalogerias
22
8
0
14 Dec 2020
Robust Unsupervised Learning via L-Statistic Minimization
Andreas Maurer
D. A. Parletta
Andrea Paudice
Massimiliano Pontil
OOD
19
0
0
14 Dec 2020
Learning with risks based on M-location
Matthew J. Holland
11
9
0
04 Dec 2020
Risk-Constrained Thompson Sampling for CVaR Bandits
Joel Q. L. Chang
Qiuyu Zhu
Vincent Y. F. Tan
11
13
0
16 Nov 2020
Adaptive Sampling for Stochastic Risk-Averse Learning
Sebastian Curi
Kfir Y. Levy
Stefanie Jegelka
Andreas Krause
24
51
0
28 Oct 2019
A Wasserstein distance approach for concentration of empirical risk estimates
A. PrashanthL.
S. Bhat
23
20
0
27 Feb 2019
1