Risk-Aware Learning for Scalable Voltage Optimization in Distribution Grids

Real-time coordination of distributed energy resources (DERs) is crucial for regulating the voltage profile in distribution grids. By capitalizing on a scalable neural network (NN) architecture, one can attain decentralized DER decisions to address the lack of real-time communications. This paper develops an advanced learning-enabled DER coordination scheme by accounting for the potential risks associated with reactive power prediction and voltage deviation. Such risks are quantified by the conditional value-at-risk (CVaR) using the worst-case samples only, and we propose a mini-batch selection algorithm to address the training speed issue in minimizing the CVaR-regularized loss. Numerical tests using real-world data on the IEEE 123-bus test case have demonstrated the computation and safety improvements of the proposed risk-aware learning algorithm for decentralized DER decision making, especially in terms of reducing feeder voltage violations.
View on arXiv