ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.07134
  4. Cited By
Tight Differential Privacy for Discrete-Valued Mechanisms and for the
  Subsampled Gaussian Mechanism Using FFT

Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT

12 June 2020
A. Koskela
Joonas Jälkö
Lukas Prediger
Antti Honkela
ArXivPDFHTML

Papers citing "Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT"

21 / 21 papers shown
Title
Near Exact Privacy Amplification for Matrix Mechanisms
Near Exact Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Saminul Haque
Thomas Steinke
Abhradeep Thakurta
42
6
0
08 Oct 2024
Better Gaussian Mechanism using Correlated Noise
Better Gaussian Mechanism using Correlated Noise
Christian Janos Lebeda
44
2
0
13 Aug 2024
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
C. Lebeda
Matthew Regehr
Gautam Kamath
Thomas Steinke
55
9
0
27 May 2024
Closed-Form Bounds for DP-SGD against Record-level Inference
Closed-Form Bounds for DP-SGD against Record-level Inference
Giovanni Cherubin
Boris Köpf
Andrew Paverd
Shruti Tople
Lukas Wutschitz
Santiago Zanella Béguelin
48
2
0
22 Feb 2024
Tight Group-Level DP Guarantees for DP-SGD with Sampling via Mixture of
  Gaussians Mechanisms
Tight Group-Level DP Guarantees for DP-SGD with Sampling via Mixture of Gaussians Mechanisms
Arun Ganesh
28
2
0
17 Jan 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
50
18
0
09 Jan 2024
Enhancing Trade-offs in Privacy, Utility, and Computational Efficiency
  through MUltistage Sampling Technique (MUST)
Enhancing Trade-offs in Privacy, Utility, and Computational Efficiency through MUltistage Sampling Technique (MUST)
Xingyuan Zhao
Fang Liu
30
0
0
20 Dec 2023
Analyzing the Shuffle Model through the Lens of Quantitative Information
  Flow
Analyzing the Shuffle Model through the Lens of Quantitative Information Flow
Mireya Jurado
Ramon G. Gonze
Mário S. Alvim
C. Palamidessi
30
1
0
22 May 2023
Breaking the Communication-Privacy-Accuracy Tradeoff with
  $f$-Differential Privacy
Breaking the Communication-Privacy-Accuracy Tradeoff with fff-Differential Privacy
Richeng Jin
Z. Su
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
34
2
0
19 Feb 2023
Skellam Mixture Mechanism: a Novel Approach to Federated Learning with
  Differential Privacy
Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy
Ergute Bao
Yizheng Zhu
X. Xiao
Yifan Yang
Beng Chin Ooi
B. Tan
Khin Mi Mi Aung
FedML
31
19
0
08 Dec 2022
DPVIm: Differentially Private Variational Inference Improved
DPVIm: Differentially Private Variational Inference Improved
Joonas Jälkö
Lukas Prediger
Antti Honkela
Samuel Kaski
34
3
0
28 Oct 2022
Composition of Differential Privacy & Privacy Amplification by
  Subsampling
Composition of Differential Privacy & Privacy Amplification by Subsampling
Thomas Steinke
76
50
0
02 Oct 2022
The Saddle-Point Accountant for Differential Privacy
The Saddle-Point Accountant for Differential Privacy
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
Juan Felipe Gomez
O. Kosut
Lalitha Sankar
Fei Wei
27
7
0
20 Aug 2022
Faster Privacy Accounting via Evolving Discretization
Faster Privacy Accounting via Evolving Discretization
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
67
14
0
10 Jul 2022
Connect the Dots: Tighter Discrete Approximations of Privacy Loss
  Distributions
Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions
Vadym Doroshenko
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
31
40
0
10 Jul 2022
Cactus Mechanisms: Optimal Differential Privacy Mechanisms in the
  Large-Composition Regime
Cactus Mechanisms: Optimal Differential Privacy Mechanisms in the Large-Composition Regime
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
Fei Wei
19
8
0
25 Jun 2022
Bayesian Estimation of Differential Privacy
Bayesian Estimation of Differential Privacy
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
A. Salem
Victor Rühle
Andrew Paverd
Mohammad Naseri
Boris Köpf
Daniel Jones
27
36
0
10 Jun 2022
Improved Differential Privacy for SGD via Optimal Private Linear
  Operators on Adaptive Streams
Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams
S. Denisov
H. B. McMahan
J. Rush
Adam D. Smith
Abhradeep Thakurta
FedML
33
60
0
16 Feb 2022
Differentially Private Fine-tuning of Language Models
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
351
0
13 Oct 2021
Optimal Accounting of Differential Privacy via Characteristic Function
Optimal Accounting of Differential Privacy via Characteristic Function
Yuqing Zhu
Jinshuo Dong
Yu Wang
18
98
0
16 Jun 2021
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Zhiqi Bu
Sivakanth Gopi
Janardhan Kulkarni
Y. Lee
J. Shen
U. Tantipongpipat
FedML
34
41
0
05 Feb 2021
1