Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.07134
Cited By
Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT
12 June 2020
A. Koskela
Joonas Jälkö
Lukas Prediger
Antti Honkela
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT"
21 / 21 papers shown
Title
Near Exact Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Saminul Haque
Thomas Steinke
Abhradeep Thakurta
40
6
0
08 Oct 2024
Better Gaussian Mechanism using Correlated Noise
Christian Janos Lebeda
44
2
0
13 Aug 2024
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
C. Lebeda
Matthew Regehr
Gautam Kamath
Thomas Steinke
55
9
0
27 May 2024
Closed-Form Bounds for DP-SGD against Record-level Inference
Giovanni Cherubin
Boris Köpf
Andrew J. Paverd
Shruti Tople
Lukas Wutschitz
Santiago Zanella Béguelin
48
2
0
22 Feb 2024
Tight Group-Level DP Guarantees for DP-SGD with Sampling via Mixture of Gaussians Mechanisms
Arun Ganesh
28
2
0
17 Jan 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
47
18
0
09 Jan 2024
Enhancing Trade-offs in Privacy, Utility, and Computational Efficiency through MUltistage Sampling Technique (MUST)
Xingyuan Zhao
Fang Liu
30
0
0
20 Dec 2023
Analyzing the Shuffle Model through the Lens of Quantitative Information Flow
Mireya Jurado
Ramon G. Gonze
Mário S. Alvim
C. Palamidessi
30
1
0
22 May 2023
Breaking the Communication-Privacy-Accuracy Tradeoff with
f
f
f
-Differential Privacy
Richeng Jin
Z. Su
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
34
2
0
19 Feb 2023
Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy
Ergute Bao
Yizheng Zhu
X. Xiao
Yin Yang
Beng Chin Ooi
B. Tan
Khin Mi Mi Aung
FedML
31
19
0
08 Dec 2022
DPVIm: Differentially Private Variational Inference Improved
Joonas Jälkö
Lukas Prediger
Antti Honkela
Samuel Kaski
34
3
0
28 Oct 2022
Composition of Differential Privacy & Privacy Amplification by Subsampling
Thomas Steinke
74
50
0
02 Oct 2022
The Saddle-Point Accountant for Differential Privacy
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
Juan Felipe Gomez
O. Kosut
Lalitha Sankar
Fei Wei
27
7
0
20 Aug 2022
Faster Privacy Accounting via Evolving Discretization
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
67
14
0
10 Jul 2022
Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions
Vadym Doroshenko
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
31
40
0
10 Jul 2022
Cactus Mechanisms: Optimal Differential Privacy Mechanisms in the Large-Composition Regime
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
Fei Wei
19
8
0
25 Jun 2022
Bayesian Estimation of Differential Privacy
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
A. Salem
Victor Rühle
Andrew J. Paverd
Mohammad Naseri
Boris Köpf
Daniel Jones
27
36
0
10 Jun 2022
Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams
S. Denisov
H. B. McMahan
J. Rush
Adam D. Smith
Abhradeep Thakurta
FedML
33
60
0
16 Feb 2022
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
350
0
13 Oct 2021
Optimal Accounting of Differential Privacy via Characteristic Function
Yuqing Zhu
Jinshuo Dong
Yu-Xiang Wang
18
98
0
16 Jun 2021
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Zhiqi Bu
Sivakanth Gopi
Janardhan Kulkarni
Y. Lee
J. Shen
U. Tantipongpipat
FedML
34
41
0
05 Feb 2021
1