ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06848
  4. Cited By
Getting a CLUE: A Method for Explaining Uncertainty Estimates

Getting a CLUE: A Method for Explaining Uncertainty Estimates

11 June 2020
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Getting a CLUE: A Method for Explaining Uncertainty Estimates"

23 / 23 papers shown
Title
From Search To Sampling: Generative Models For Robust Algorithmic Recourse
From Search To Sampling: Generative Models For Robust Algorithmic Recourse
Prateek Garg
Lokesh Nagalapatti
Sunita Sarawagi
31
0
0
12 May 2025
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
98
0
0
04 May 2025
What is different between these datasets?
What is different between these datasets?
Varun Babbar
Zhicheng Guo
Cynthia Rudin
59
1
0
08 Mar 2024
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
J. Duell
M. Seisenberger
Hsuan-Wei Fu
Xiuyi Fan
UQCV
BDL
34
1
0
27 Feb 2024
A Framework for Variational Inference of Lightweight Bayesian Neural
  Networks with Heteroscedastic Uncertainties
A Framework for Variational Inference of Lightweight Bayesian Neural Networks with Heteroscedastic Uncertainties
D. Schodt
Ryan Brown
Michael Merritt
Samuel Park
Delsin Menolascino
M. Peot
BDL
UQCV
UD
24
1
0
22 Feb 2024
Identifying Drivers of Predictive Aleatoric Uncertainty
Identifying Drivers of Predictive Aleatoric Uncertainty
Pascal Iversen
Simon Witzke
Katharina Baum
Bernhard Y. Renard
UD
43
1
0
12 Dec 2023
Endogenous Macrodynamics in Algorithmic Recourse
Endogenous Macrodynamics in Algorithmic Recourse
Patrick Altmeyer
Giovan Angela
Aleksander Buszydlik
Karol Dobiczek
A. V. Deursen
Cynthia C. S. Liem
21
7
0
16 Aug 2023
Explaining Black-Box Models through Counterfactuals
Explaining Black-Box Models through Counterfactuals
Patrick Altmeyer
A. V. Deursen
Cynthia C. S. Liem
CML
LRM
34
2
0
14 Aug 2023
MoleCLUEs: Molecular Conformers Maximally In-Distribution for Predictive
  Models
MoleCLUEs: Molecular Conformers Maximally In-Distribution for Predictive Models
Michael R. Maser
Natasa Tagasovska
Jae Hyeon Lee
Andrew Watkins
31
0
0
20 Jun 2023
Learning Personalized Decision Support Policies
Learning Personalized Decision Support Policies
Umang Bhatt
Valerie Chen
Katherine M. Collins
Parameswaran Kamalaruban
Emma Kallina
Adrian Weller
Ameet Talwalkar
OffRL
48
10
0
13 Apr 2023
CEnt: An Entropy-based Model-agnostic Explainability Framework to
  Contrast Classifiers' Decisions
CEnt: An Entropy-based Model-agnostic Explainability Framework to Contrast Classifiers' Decisions
Julia El Zini
Mohamad Mansour
M. Awad
19
1
0
19 Jan 2023
Uncertainty Quantification with Pre-trained Language Models: A
  Large-Scale Empirical Analysis
Uncertainty Quantification with Pre-trained Language Models: A Large-Scale Empirical Analysis
Yuxin Xiao
Paul Pu Liang
Umang Bhatt
W. Neiswanger
Ruslan Salakhutdinov
Louis-Philippe Morency
175
86
0
10 Oct 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
25
28
0
17 Jun 2022
Gradient-based Counterfactual Explanations using Tractable Probabilistic
  Models
Gradient-based Counterfactual Explanations using Tractable Probabilistic Models
Xiaoting Shao
Kristian Kersting
BDL
22
1
0
16 May 2022
Probabilistically Robust Recourse: Navigating the Trade-offs between
  Costs and Robustness in Algorithmic Recourse
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Martin Pawelczyk
Teresa Datta
Johannes van-den-Heuvel
Gjergji Kasneci
Himabindu Lakkaraju
19
38
0
13 Mar 2022
McXai: Local model-agnostic explanation as two games
McXai: Local model-agnostic explanation as two games
Yiran Huang
Nicole Schaal
Michael Hefenbrock
Yexu Zhou
T. Riedel
Likun Fang
Michael Beigl
FAtt
10
4
0
04 Jan 2022
Shapley variable importance clouds for interpretable machine learning
Shapley variable importance clouds for interpretable machine learning
Yilin Ning
M. Ong
Bibhas Chakraborty
B. Goldstein
Daniel Ting
Roger Vaughan
Nan Liu
FAtt
21
69
0
06 Oct 2021
Deep Neural Networks and Tabular Data: A Survey
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
27
645
0
05 Oct 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
30
1,109
0
07 Jul 2021
Explaining in Style: Training a GAN to explain a classifier in
  StyleSpace
Explaining in Style: Training a GAN to explain a classifier in StyleSpace
Oran Lang
Yossi Gandelsman
Michal Yarom
Yoav Wald
G. Elidan
...
William T. Freeman
Phillip Isola
Amir Globerson
Michal Irani
Inbar Mosseri
GAN
35
152
0
27 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
53
651
0
20 Mar 2021
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,235
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,681
0
28 Feb 2017
1