ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06657
  4. Cited By
Directional convergence and alignment in deep learning

Directional convergence and alignment in deep learning

11 June 2020
Ziwei Ji
Matus Telgarsky
ArXivPDFHTML

Papers citing "Directional convergence and alignment in deep learning"

37 / 37 papers shown
Title
Embedding principle of homogeneous neural network for classification problem
Embedding principle of homogeneous neural network for classification problem
Jiahan Zhang
Tao Luo
Yaoyu Zhang
9
0
0
18 May 2025
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Chenyang Zhang
Peifeng Gao
Difan Zou
Yuan Cao
OOD
MLT
62
0
0
11 Apr 2025
Implicit Geometry of Next-token Prediction: From Language Sparsity Patterns to Model Representations
Implicit Geometry of Next-token Prediction: From Language Sparsity Patterns to Model Representations
Yize Zhao
Tina Behnia
V. Vakilian
Christos Thrampoulidis
60
8
0
20 Feb 2025
The late-stage training dynamics of (stochastic) subgradient descent on homogeneous neural networks
Sholom Schechtman
Nicolas Schreuder
185
0
0
08 Feb 2025
Grokking at the Edge of Numerical Stability
Grokking at the Edge of Numerical Stability
Lucas Prieto
Melih Barsbey
Pedro A.M. Mediano
Tolga Birdal
48
3
0
08 Jan 2025
Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron
Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron
Christian Schmid
James M. Murray
40
0
0
05 Sep 2024
Classifying Overlapping Gaussian Mixtures in High Dimensions: From
  Optimal Classifiers to Neural Nets
Classifying Overlapping Gaussian Mixtures in High Dimensions: From Optimal Classifiers to Neural Nets
Khen Cohen
Noam Levi
Yaron Oz
BDL
31
1
0
28 May 2024
Early Directional Convergence in Deep Homogeneous Neural Networks for Small Initializations
Early Directional Convergence in Deep Homogeneous Neural Networks for Small Initializations
Akshay Kumar
Jarvis Haupt
ODL
44
3
0
12 Mar 2024
Implicit Bias and Fast Convergence Rates for Self-attention
Implicit Bias and Fast Convergence Rates for Self-attention
Bhavya Vasudeva
Puneesh Deora
Christos Thrampoulidis
37
13
0
08 Feb 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
Fundamental Limits of Membership Inference Attacks on Machine Learning Models
Fundamental Limits of Membership Inference Attacks on Machine Learning Models
Eric Aubinais
Elisabeth Gassiat
Pablo Piantanida
MIACV
50
2
0
20 Oct 2023
Early Neuron Alignment in Two-layer ReLU Networks with Small
  Initialization
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization
Hancheng Min
Enrique Mallada
René Vidal
MLT
34
19
0
24 Jul 2023
Deconstructing Data Reconstruction: Multiclass, Weight Decay and General
  Losses
Deconstructing Data Reconstruction: Multiclass, Weight Decay and General Losses
G. Buzaglo
Niv Haim
Gilad Yehudai
Gal Vardi
Yakir Oz
Yaniv Nikankin
Michal Irani
34
10
0
04 Jul 2023
Fast Convergence in Learning Two-Layer Neural Networks with Separable
  Data
Fast Convergence in Learning Two-Layer Neural Networks with Separable Data
Hossein Taheri
Christos Thrampoulidis
MLT
16
3
0
22 May 2023
ADS_UNet: A Nested UNet for Histopathology Image Segmentation
ADS_UNet: A Nested UNet for Histopathology Image Segmentation
Yi-Lun Yang
S. Dasmahapatra
S. Mahmoodi
MedIm
SSeg
26
16
0
10 Apr 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and
  Dataset Distillation
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
42
5
0
02 Feb 2023
Understanding Incremental Learning of Gradient Descent: A Fine-grained
  Analysis of Matrix Sensing
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
Jikai Jin
Zhiyuan Li
Kaifeng Lyu
S. Du
Jason D. Lee
MLT
54
34
0
27 Jan 2023
Learning Single-Index Models with Shallow Neural Networks
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
167
68
0
27 Oct 2022
SGD with Large Step Sizes Learns Sparse Features
SGD with Large Step Sizes Learns Sparse Features
Maksym Andriushchenko
Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
45
56
0
11 Oct 2022
Implicit Bias of Large Depth Networks: a Notion of Rank for Nonlinear
  Functions
Implicit Bias of Large Depth Networks: a Notion of Rank for Nonlinear Functions
Arthur Jacot
36
25
0
29 Sep 2022
Importance Tempering: Group Robustness for Overparameterized Models
Importance Tempering: Group Robustness for Overparameterized Models
Yiping Lu
Wenlong Ji
Zachary Izzo
Lexing Ying
42
7
0
19 Sep 2022
On Generalization of Decentralized Learning with Separable Data
On Generalization of Decentralized Learning with Separable Data
Hossein Taheri
Christos Thrampoulidis
FedML
30
11
0
15 Sep 2022
On the Implicit Bias in Deep-Learning Algorithms
On the Implicit Bias in Deep-Learning Algorithms
Gal Vardi
FedML
AI4CE
34
72
0
26 Aug 2022
Imbalance Trouble: Revisiting Neural-Collapse Geometry
Imbalance Trouble: Revisiting Neural-Collapse Geometry
Christos Thrampoulidis
Ganesh Ramachandra Kini
V. Vakilian
Tina Behnia
26
69
0
10 Aug 2022
Implicit Bias of Gradient Descent on Reparametrized Models: On
  Equivalence to Mirror Descent
Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent
Zhiyuan Li
Tianhao Wang
Jason D. Lee
Sanjeev Arora
42
27
0
08 Jul 2022
Warped Convolutional Networks: Bridge Homography to sl(3) algebra by
  Group Convolution
Warped Convolutional Networks: Bridge Homography to sl(3) algebra by Group Convolution
Xinrui Zhan
Yang Li
Wenyu Liu
Jianke Zhu
30
0
0
23 Jun 2022
Reconstructing Training Data from Trained Neural Networks
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
40
132
0
15 Jun 2022
Understanding the Generalization Benefit of Normalization Layers:
  Sharpness Reduction
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu
Zhiyuan Li
Sanjeev Arora
FAtt
40
70
0
14 Jun 2022
Adversarial Reprogramming Revisited
Adversarial Reprogramming Revisited
Matthias Englert
R. Lazic
AAML
29
8
0
07 Jun 2022
Gradient flow dynamics of shallow ReLU networks for square loss and
  orthogonal inputs
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
24
58
0
02 Jun 2022
On the Effective Number of Linear Regions in Shallow Univariate ReLU
  Networks: Convergence Guarantees and Implicit Bias
On the Effective Number of Linear Regions in Shallow Univariate ReLU Networks: Convergence Guarantees and Implicit Bias
Itay Safran
Gal Vardi
Jason D. Lee
MLT
59
23
0
18 May 2022
Implicit Regularization in Hierarchical Tensor Factorization and Deep
  Convolutional Neural Networks
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Noam Razin
Asaf Maman
Nadav Cohen
46
29
0
27 Jan 2022
On Margin Maximization in Linear and ReLU Networks
On Margin Maximization in Linear and ReLU Networks
Gal Vardi
Ohad Shamir
Nathan Srebro
50
28
0
06 Oct 2021
Perturbated Gradients Updating within Unit Space for Deep Learning
Perturbated Gradients Updating within Unit Space for Deep Learning
Ching-Hsun Tseng
Liu Cheng
Shin-Jye Lee
Xiaojun Zeng
45
5
0
01 Oct 2021
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous
  Neural Networks
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks
Bohan Wang
Qi Meng
Wei Chen
Tie-Yan Liu
30
33
0
11 Dec 2020
Deep Networks and the Multiple Manifold Problem
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
1