Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.06657
Cited By
Directional convergence and alignment in deep learning
11 June 2020
Ziwei Ji
Matus Telgarsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Directional convergence and alignment in deep learning"
36 / 36 papers shown
Title
Embedding principle of homogeneous neural network for classification problem
Jiahan Zhang
Tao Luo
Yaoyu Zhang
2
0
0
18 May 2025
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Chenyang Zhang
Peifeng Gao
Difan Zou
Yuan Cao
OOD
MLT
59
0
0
11 Apr 2025
Implicit Geometry of Next-token Prediction: From Language Sparsity Patterns to Model Representations
Yize Zhao
Tina Behnia
V. Vakilian
Christos Thrampoulidis
55
8
0
20 Feb 2025
The late-stage training dynamics of (stochastic) subgradient descent on homogeneous neural networks
Sholom Schechtman
Nicolas Schreuder
167
0
0
08 Feb 2025
Grokking at the Edge of Numerical Stability
Lucas Prieto
Melih Barsbey
Pedro A.M. Mediano
Tolga Birdal
48
3
0
08 Jan 2025
Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron
Christian Schmid
James M. Murray
40
0
0
05 Sep 2024
Classifying Overlapping Gaussian Mixtures in High Dimensions: From Optimal Classifiers to Neural Nets
Khen Cohen
Noam Levi
Yaron Oz
BDL
31
1
0
28 May 2024
Early Directional Convergence in Deep Homogeneous Neural Networks for Small Initializations
Akshay Kumar
Jarvis Haupt
ODL
44
3
0
12 Mar 2024
Implicit Bias and Fast Convergence Rates for Self-attention
Bhavya Vasudeva
Puneesh Deora
Christos Thrampoulidis
34
13
0
08 Feb 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
Fundamental Limits of Membership Inference Attacks on Machine Learning Models
Eric Aubinais
Elisabeth Gassiat
Pablo Piantanida
MIACV
50
2
0
20 Oct 2023
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization
Hancheng Min
Enrique Mallada
René Vidal
MLT
34
18
0
24 Jul 2023
Deconstructing Data Reconstruction: Multiclass, Weight Decay and General Losses
G. Buzaglo
Niv Haim
Gilad Yehudai
Gal Vardi
Yakir Oz
Yaniv Nikankin
Michal Irani
34
10
0
04 Jul 2023
Fast Convergence in Learning Two-Layer Neural Networks with Separable Data
Hossein Taheri
Christos Thrampoulidis
MLT
16
3
0
22 May 2023
ADS_UNet: A Nested UNet for Histopathology Image Segmentation
Yi-Lun Yang
S. Dasmahapatra
S. Mahmoodi
MedIm
SSeg
26
16
0
10 Apr 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
42
5
0
02 Feb 2023
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
Jikai Jin
Zhiyuan Li
Kaifeng Lyu
S. Du
Jason D. Lee
MLT
54
34
0
27 Jan 2023
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
167
68
0
27 Oct 2022
SGD with Large Step Sizes Learns Sparse Features
Maksym Andriushchenko
Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
45
56
0
11 Oct 2022
Implicit Bias of Large Depth Networks: a Notion of Rank for Nonlinear Functions
Arthur Jacot
36
25
0
29 Sep 2022
Importance Tempering: Group Robustness for Overparameterized Models
Yiping Lu
Wenlong Ji
Zachary Izzo
Lexing Ying
42
7
0
19 Sep 2022
On Generalization of Decentralized Learning with Separable Data
Hossein Taheri
Christos Thrampoulidis
FedML
27
10
0
15 Sep 2022
On the Implicit Bias in Deep-Learning Algorithms
Gal Vardi
FedML
AI4CE
34
72
0
26 Aug 2022
Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent
Zhiyuan Li
Tianhao Wang
Jason D. Lee
Sanjeev Arora
42
27
0
08 Jul 2022
Warped Convolutional Networks: Bridge Homography to sl(3) algebra by Group Convolution
Xinrui Zhan
Yang Li
Wenyu Liu
Jianke Zhu
27
0
0
23 Jun 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
40
132
0
15 Jun 2022
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu
Zhiyuan Li
Sanjeev Arora
FAtt
40
70
0
14 Jun 2022
Adversarial Reprogramming Revisited
Matthias Englert
R. Lazic
AAML
26
8
0
07 Jun 2022
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
24
58
0
02 Jun 2022
On the Effective Number of Linear Regions in Shallow Univariate ReLU Networks: Convergence Guarantees and Implicit Bias
Itay Safran
Gal Vardi
Jason D. Lee
MLT
59
23
0
18 May 2022
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Noam Razin
Asaf Maman
Nadav Cohen
46
29
0
27 Jan 2022
On Margin Maximization in Linear and ReLU Networks
Gal Vardi
Ohad Shamir
Nathan Srebro
50
28
0
06 Oct 2021
Perturbated Gradients Updating within Unit Space for Deep Learning
Ching-Hsun Tseng
Liu Cheng
Shin-Jye Lee
Xiaojun Zeng
42
5
0
01 Oct 2021
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks
Bohan Wang
Qi Meng
Wei Chen
Tie-Yan Liu
30
33
0
11 Dec 2020
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
1