ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06620
  4. Cited By
From proprioception to long-horizon planning in novel environments: A
  hierarchical RL model

From proprioception to long-horizon planning in novel environments: A hierarchical RL model

11 June 2020
Nishad Gothoskar
Miguel Lázaro-Gredilla
Dileep George
ArXivPDFHTML

Papers citing "From proprioception to long-horizon planning in novel environments: A hierarchical RL model"

22 / 22 papers shown
Title
Benchmarking Model-Based Reinforcement Learning
Benchmarking Model-Based Reinforcement Learning
Tingwu Wang
Xuchan Bao
I. Clavera
Jerrick Hoang
Yeming Wen
Eric D. Langlois
Matthew Shunshi Zhang
Guodong Zhang
Pieter Abbeel
Jimmy Ba
OffRL
57
361
0
03 Jul 2019
Dynamics-Aware Unsupervised Discovery of Skills
Dynamics-Aware Unsupervised Discovery of Skills
Archit Sharma
S. Gu
Sergey Levine
Vikash Kumar
Karol Hausman
61
404
0
02 Jul 2019
Search on the Replay Buffer: Bridging Planning and Reinforcement
  Learning
Search on the Replay Buffer: Bridging Planning and Reinforcement Learning
Benjamin Eysenbach
Ruslan Salakhutdinov
Sergey Levine
OffRL
51
289
0
12 Jun 2019
Plan Online, Learn Offline: Efficient Learning and Exploration via
  Model-Based Control
Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control
Kendall Lowrey
Aravind Rajeswaran
Sham Kakade
G. Haro
Igor Mordatch
OffRL
56
224
0
05 Nov 2018
Learning Navigation Behaviors End-to-End with AutoRL
Learning Navigation Behaviors End-to-End with AutoRL
H. Chiang
Aleksandra Faust
Marek Fiser
Anthony G. Francis
102
235
0
26 Sep 2018
Variational Option Discovery Algorithms
Variational Option Discovery Algorithms
Joshua Achiam
Harrison Edwards
Dario Amodei
Pieter Abbeel
DRL
47
177
0
26 Jul 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
166
1,263
0
30 May 2018
Latent Space Policies for Hierarchical Reinforcement Learning
Latent Space Policies for Hierarchical Reinforcement Learning
Tuomas Haarnoja
Kristian Hartikainen
Pieter Abbeel
Sergey Levine
BDL
52
190
0
09 Apr 2018
Semi-parametric Topological Memory for Navigation
Semi-parametric Topological Memory for Navigation
Nikolay Savinov
Alexey Dosovitskiy
V. Koltun
47
379
0
01 Mar 2018
Disentangling the independently controllable factors of variation by
  interacting with the world
Disentangling the independently controllable factors of variation by interacting with the world
Valentin Thomas
Emmanuel Bengio
W. Fedus
Jules Pondard
Philippe Beaudoin
Hugo Larochelle
Joelle Pineau
Doina Precup
Yoshua Bengio
DRL
CoGe
CML
37
61
0
26 Feb 2018
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
153
5,121
0
26 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
219
8,236
0
04 Jan 2018
PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement
  Learning and Sampling-based Planning
PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning
Aleksandra Faust
Oscar Ramirez
Marek Fiser
Kenneth Oslund
Anthony G. Francis
James Davidson
Lydia Tapia
57
289
0
11 Oct 2017
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with
  Model-Free Fine-Tuning
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning
Anusha Nagabandi
G. Kahn
R. Fearing
Sergey Levine
73
967
0
08 Aug 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
234
18,685
0
20 Jul 2017
Stochastic Neural Networks for Hierarchical Reinforcement Learning
Stochastic Neural Networks for Hierarchical Reinforcement Learning
Carlos Florensa
Yan Duan
Pieter Abbeel
BDL
67
360
0
10 Apr 2017
Variational Intrinsic Control
Variational Intrinsic Control
Karol Gregor
Danilo Jimenez Rezende
Daan Wierstra
DRL
OffRL
49
427
0
22 Nov 2016
Learning and Transfer of Modulated Locomotor Controllers
Learning and Transfer of Modulated Locomotor Controllers
N. Heess
Greg Wayne
Yuval Tassa
Timothy Lillicrap
Martin Riedmiller
David Silver
54
207
0
17 Oct 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
174
5,056
0
05 Jun 2016
VIME: Variational Information Maximizing Exploration
VIME: Variational Information Maximizing Exploration
Rein Houthooft
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
48
78
0
31 May 2016
Variational Information Maximisation for Intrinsically Motivated
  Reinforcement Learning
Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning
S. Mohamed
Danilo Jimenez Rezende
DRL
SSL
54
400
0
29 Sep 2015
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
103
12,163
0
19 Dec 2013
1