ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04325
  4. Cited By
Fully Convolutional Mesh Autoencoder using Efficient Spatially Varying
  Kernels

Fully Convolutional Mesh Autoencoder using Efficient Spatially Varying Kernels

8 June 2020
Yi Zhou
Chenglei Wu
Zimo Li
Chen Cao
Yuting Ye
Jason M. Saragih
Hao Li
Yaser Sheikh
ArXivPDFHTML

Papers citing "Fully Convolutional Mesh Autoencoder using Efficient Spatially Varying Kernels"

21 / 21 papers shown
Title
Absolute Coordinates Make Motion Generation Easy
Absolute Coordinates Make Motion Generation Easy
Zichong Meng
Zeyu Han
Xiaogang Peng
Yiming Xie
Huaizu Jiang
36
0
0
26 May 2025
A Survey on Computational Solutions for Reconstructing Complete Objects by Reassembling Their Fractured Parts
A Survey on Computational Solutions for Reconstructing Complete Objects by Reassembling Their Fractured Parts
Jiaxin Lu
Yongqing Liang
Huijun Han
Jiacheng Hua
Junfeng Jiang
Xin Li
Qixing Huang
3DV
58
1
0
18 Oct 2024
Grid-GCN for Fast and Scalable Point Cloud Learning
Grid-GCN for Fast and Scalable Point Cloud Learning
Qiangeng Xu
Xudong Sun
Cho-Ying Wu
Panqu Wang
Ulrich Neumann
3DPC
GNN
45
244
0
06 Dec 2019
Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape
  Representation Learning and Generation
Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape Representation Learning and Generation
Giorgos Bouritsas
Sergiy Bokhnyak
Stylianos Ploumpis
M. Bronstein
Stefanos Zafeiriou
MedIm
3DH
26
165
0
08 May 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
83
4,289
0
06 Mar 2019
TextureNet: Consistent Local Parametrizations for Learning from
  High-Resolution Signals on Meshes
TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes
Jingwei Huang
Haotian Zhang
L. Yi
Thomas Funkhouser
Matthias Nießner
Leonidas Guibas
3DPC
3DV
30
117
0
30 Nov 2018
Generating 3D faces using Convolutional Mesh Autoencoders
Generating 3D faces using Convolutional Mesh Autoencoders
Anurag Ranjan
Timo Bolkart
Soubhik Sanyal
Michael J. Black
CVBM
3DH
32
572
0
26 Jul 2018
Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point
  Clouds
Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds
Pedro Hermosilla
Tobias Ritschel
Pere-Pau Vázquez
À. Vinacua
Timo Ropinski
3DPC
51
260
0
05 Jun 2018
Deformable Shape Completion with Graph Convolutional Autoencoders
Deformable Shape Completion with Graph Convolutional Autoencoders
Or Litany
A. Bronstein
M. Bronstein
A. Makadia
31
223
0
01 Dec 2017
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
Matthias Fey
J. E. Lenssen
F. Weichert
H. Müller
3DPC
43
438
0
24 Nov 2017
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
190
19,902
0
30 Oct 2017
MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised
  Monocular Reconstruction
MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction
A. Tewari
Michael Zollhöfer
Hyeongwoo Kim
Pablo Garrido
Florian Bernard
P. Pérez
Christian Theobalt
3DH
CVBM
54
550
0
30 Mar 2017
SurfNet: Generating 3D shape surfaces using deep residual networks
SurfNet: Generating 3D shape surfaces using deep residual networks
Ayan Sinha
Asim Unmesh
Qi-Xing Huang
K. Ramani
23
179
0
12 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
290
1,813
0
25 Nov 2016
Variational Graph Auto-Encoders
Variational Graph Auto-Encoders
Thomas Kipf
Max Welling
GNN
BDL
SSL
CML
68
3,541
0
21 Nov 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
253
28,795
0
09 Sep 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
161
7,622
0
30 Jun 2016
Learning shape correspondence with anisotropic convolutional neural
  networks
Learning shape correspondence with anisotropic convolutional neural networks
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
M. Bronstein
3DPC
47
506
0
20 May 2016
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
135
5,502
0
23 Nov 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
99
149,474
0
22 Dec 2014
Spectral Networks and Locally Connected Networks on Graphs
Spectral Networks and Locally Connected Networks on Graphs
Joan Bruna
Wojciech Zaremba
Arthur Szlam
Yann LeCun
GNN
28
4,856
0
21 Dec 2013
1