ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04183
  4. Cited By
Uncertainty-Aware Deep Classifiers using Generative Models

Uncertainty-Aware Deep Classifiers using Generative Models

7 June 2020
Murat Sensoy
Lance M. Kaplan
Federico Cerutti
Maryam Saleki
    UQCV
    OOD
ArXivPDFHTML

Papers citing "Uncertainty-Aware Deep Classifiers using Generative Models"

44 / 44 papers shown
Title
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Jiaxiang Yi
Miguel A. Bessa
UD
PER
UQCV
46
0
0
05 May 2025
Revisiting Essential and Nonessential Settings of Evidential Deep
  Learning
Revisiting Essential and Nonessential Settings of Evidential Deep Learning
Mengyuan Chen
Junyu Gao
Changsheng Xu
EDL
54
1
0
01 Oct 2024
Uncertainty Estimation by Density Aware Evidential Deep Learning
Uncertainty Estimation by Density Aware Evidential Deep Learning
Taeseong Yoon
Heeyoung Kim
EDL
UQCV
41
1
0
13 Sep 2024
Towards certifiable AI in aviation: landscape, challenges, and
  opportunities
Towards certifiable AI in aviation: landscape, challenges, and opportunities
Hymalai Bello
Daniel Geißler
L. Ray
Stefan Muller-Divéky
Peter Muller
Shannon Kittrell
Mengxi Liu
Bo Zhou
Paul Lukowicz
27
1
0
13 Sep 2024
A Comprehensive Survey on Evidential Deep Learning and Its Applications
A Comprehensive Survey on Evidential Deep Learning and Its Applications
Junyu Gao
Mengyuan Chen
Liangyu Xiang
Changsheng Xu
EDL
BDL
UQCV
44
5
0
07 Sep 2024
Hierarchical Visual Categories Modeling: A Joint Representation Learning
  and Density Estimation Framework for Out-of-Distribution Detection
Hierarchical Visual Categories Modeling: A Joint Representation Learning and Density Estimation Framework for Out-of-Distribution Detection
Jinglun Li
Xinyu Zhou
Pinxue Guo
Yixuan Sun
Yiwen Huang
Weifeng Ge
Wenqiang Zhang
41
2
0
28 Aug 2024
An Uncertainty-aware Deep Learning Framework-based Robust Design
  Optimization of Metamaterial Units
An Uncertainty-aware Deep Learning Framework-based Robust Design Optimization of Metamaterial Units
Zihan Wang
Anindya Bhaduri
Hongyi Xu
Liping Wang
34
1
0
19 Jul 2024
Are you sure? Analysing Uncertainty Quantification Approaches for
  Real-world Speech Emotion Recognition
Are you sure? Analysing Uncertainty Quantification Approaches for Real-world Speech Emotion Recognition
Oliver Schrufer
M. Milling
Felix Burkhardt
F. Eyben
Björn Schuller
29
3
0
01 Jul 2024
Neuro-Symbolic Fusion of Wi-Fi Sensing Data for Passive Radar with
  Inter-Modal Knowledge Transfer
Neuro-Symbolic Fusion of Wi-Fi Sensing Data for Passive Radar with Inter-Modal Knowledge Transfer
Marco Cominelli
Francesco Gringoli
Lance M. Kaplan
Mani B. Srivastava
Trevor Bihl
Erik P. Blasch
Nandini Iyer
Federico Cerutti
23
1
0
01 Jul 2024
Accurate Passive Radar via an Uncertainty-Aware Fusion of Wi-Fi Sensing
  Data
Accurate Passive Radar via an Uncertainty-Aware Fusion of Wi-Fi Sensing Data
Marco Cominelli
Francesco Gringoli
Lance M. Kaplan
Mani B. Srivastava
Federico Cerutti
28
6
0
01 Jul 2024
Improving Deep Learning Model Calibration for Cardiac Applications using
  Deterministic Uncertainty Networks and Uncertainty-aware Training
Improving Deep Learning Model Calibration for Cardiac Applications using Deterministic Uncertainty Networks and Uncertainty-aware Training
Tareen Dawood
B. Ruijsink
Reza Razavi
Andrew P. King
Esther Puyol-Antón
UQCV
45
1
0
10 May 2024
Hyper Evidential Deep Learning to Quantify Composite Classification
  Uncertainty
Hyper Evidential Deep Learning to Quantify Composite Classification Uncertainty
Changbin Li
Kangshuo Li
Yuzhe Ou
Lance M. Kaplan
A. Jøsang
Jin-Hee Cho
Dong Hyun. Jeong
Feng Chen
UQCV
BDL
EDL
38
5
0
17 Apr 2024
Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A
  Survey
Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A Survey
Naveen Karunanayake
Ravin Gunawardena
Suranga Seneviratne
Sanjay Chawla
OOD
51
5
0
08 Apr 2024
Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in
  Quantifying Uncertainty Propagation
Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation
Minglei Yang
Pengjun Wang
Ming Fan
Dan Lu
Yanzhao Cao
Guannan Zhang
AI4CE
27
1
0
31 Mar 2024
Are Uncertainty Quantification Capabilities of Evidential Deep Learning
  a Mirage?
Are Uncertainty Quantification Capabilities of Evidential Deep Learning a Mirage?
Maohao Shen
Jeonghun Ryu
Soumya Ghosh
Yuheng Bu
P. Sattigeri
Subhro Das
Greg Wornell
EDL
BDL
UQCV
36
2
0
09 Feb 2024
Knowledge from Uncertainty in Evidential Deep Learning
Knowledge from Uncertainty in Evidential Deep Learning
Cai Davies
Marc Roig Vilamala
Alun D. Preece
Federico Cerutti
Lance M. Kaplan
Supriyo Chakraborty
EDL
16
2
0
19 Oct 2023
Flexible Visual Recognition by Evidential Modeling of Confusion and
  Ignorance
Flexible Visual Recognition by Evidential Modeling of Confusion and Ignorance
Lei Fan
Bo Liu
Haoxiang Li
Ying Wu
Gang Hua
31
4
0
14 Sep 2023
Uncertainty Aware Training to Improve Deep Learning Model Calibration
  for Classification of Cardiac MR Images
Uncertainty Aware Training to Improve Deep Learning Model Calibration for Classification of Cardiac MR Images
Tareen Dawood
Chia-Ju Chen
B. Sidhu
B. Ruijsink
J. Gould
...
Vishal S. Mehta
C. Rinaldi
Esther Puyol-Antón
Reza Razavi
A. King
OOD
27
10
0
29 Aug 2023
Evidential Detection and Tracking Collaboration: New Problem, Benchmark
  and Algorithm for Robust Anti-UAV System
Evidential Detection and Tracking Collaboration: New Problem, Benchmark and Algorithm for Robust Anti-UAV System
Xuefeng Zhu
Tian-Hao Xu
Jian-jun Zhao
Jiawen Liu
Kai Wang
...
Qiang Wang
Lei Jin
Zhengyu Zhu
Junliang Xing
Xiaojun Wu
37
9
0
27 Jun 2023
Uncertainty Estimation for Molecules: Desiderata and Methods
Uncertainty Estimation for Molecules: Desiderata and Methods
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
23
9
0
20 Jun 2023
Synthetic data, real errors: how (not) to publish and use synthetic data
Synthetic data, real errors: how (not) to publish and use synthetic data
B. V. Breugel
Zhaozhi Qian
M. Schaar
SyDa
64
28
0
16 May 2023
MSS-PAE: Saving Autoencoder-based Outlier Detection from Unexpected
  Reconstruction
MSS-PAE: Saving Autoencoder-based Outlier Detection from Unexpected Reconstruction
Xu Tan
Jiawei Yang
Junqi Chen
S. Rahardja
S. Rahardja
UQCV
25
1
0
03 Apr 2023
Interpretable Self-Aware Neural Networks for Robust Trajectory
  Prediction
Interpretable Self-Aware Neural Networks for Robust Trajectory Prediction
Masha Itkina
Mykel J. Kochenderfer
EDL
UQCV
26
26
0
16 Nov 2022
Semantic Novelty Detection via Relational Reasoning
Semantic Novelty Detection via Relational Reasoning
Francesco Cappio Borlino
S. Bucci
Tatiana Tommasi
17
4
0
18 Jul 2022
A Survey on Uncertainty Reasoning and Quantification for Decision
  Making: Belief Theory Meets Deep Learning
A Survey on Uncertainty Reasoning and Quantification for Decision Making: Belief Theory Meets Deep Learning
Zhen Guo
Zelin Wan
Qisheng Zhang
Xujiang Zhao
F. Chen
Jin-Hee Cho
Qi Zhang
Lance M. Kaplan
Dong-Ho Jeong
A. Jøsang
UQCV
EDL
17
10
0
12 Jun 2022
UQGAN: A Unified Model for Uncertainty Quantification of Deep
  Classifiers trained via Conditional GANs
UQGAN: A Unified Model for Uncertainty Quantification of Deep Classifiers trained via Conditional GANs
Philipp Oberdiek
G. Fink
Matthias Rottmann
OODD
37
14
0
31 Jan 2022
FROB: Few-shot ROBust Model for Classification and Out-of-Distribution
  Detection
FROB: Few-shot ROBust Model for Classification and Out-of-Distribution Detection
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
OODD
19
4
0
30 Nov 2021
An Uncertainty-Informed Framework for Trustworthy Fault Diagnosis in
  Safety-Critical Applications
An Uncertainty-Informed Framework for Trustworthy Fault Diagnosis in Safety-Critical Applications
Taotao Zhou
E. Droguett
A. Mosleh
F. Chan
EDL
30
38
0
08 Oct 2021
Prior and Posterior Networks: A Survey on Evidential Deep Learning
  Methods For Uncertainty Estimation
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDL
UQCV
UD
EDL
PER
48
48
0
06 Oct 2021
Evidential Deep Learning for Open Set Action Recognition
Evidential Deep Learning for Open Set Action Recognition
Wentao Bao
Qi Yu
Yu Kong
CML
EDL
19
135
0
21 Jul 2021
Uncertainty-Aware Reliable Text Classification
Uncertainty-Aware Reliable Text Classification
Yibo Hu
Latifur Khan
EDL
UQCV
33
33
0
15 Jul 2021
FF-NSL: Feed-Forward Neural-Symbolic Learner
FF-NSL: Feed-Forward Neural-Symbolic Learner
Daniel Cunnington
Mark Law
A. Russo
Jorge Lobo
NAI
39
15
0
24 Jun 2021
Graceful Degradation and Related Fields
Graceful Degradation and Related Fields
J. Dymond
31
4
0
21 Jun 2021
Evidential Turing Processes
Evidential Turing Processes
M. Kandemir
Abdullah Akgul
Manuel Haussmann
Gözde B. Ünal
EDL
UQCV
BDL
33
9
0
02 Jun 2021
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential
  Family Distributions
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential Family Distributions
Bertrand Charpentier
Oliver Borchert
Daniel Zügner
Simon Geisler
Stephan Günnemann
UQCV
BDL
27
17
0
10 May 2021
Robust Data-Driven Error Compensation for a Battery Model
Robust Data-Driven Error Compensation for a Battery Model
P. Gesner
F. Kirschbaum
R. Jakobi
B. Bäker
9
1
0
31 Dec 2020
Multidimensional Uncertainty-Aware Evidential Neural Networks
Multidimensional Uncertainty-Aware Evidential Neural Networks
Yibo Hu
Yuzhe Ou
Xujiang Zhao
Jin-Hee Cho
Feng Chen
EDL
UQCV
AAML
30
23
0
26 Dec 2020
NSL: Hybrid Interpretable Learning From Noisy Raw Data
NSL: Hybrid Interpretable Learning From Noisy Raw Data
Daniel Cunnington
A. Russo
Mark Law
Jorge Lobo
Lance M. Kaplan
NAI
19
3
0
09 Dec 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
51
1,879
0
12 Nov 2020
Out-of-Distribution Detection for Automotive Perception
Out-of-Distribution Detection for Automotive Perception
Julia Nitsch
Masha Itkina
Ransalu Senanayake
Juan I. Nieto
M. Schmidt
Roland Siegwart
Mykel J. Kochenderfer
Cesar Cadena
UQCV
12
63
0
03 Nov 2020
Evaluating Robustness of Predictive Uncertainty Estimation: Are
  Dirichlet-based Models Reliable?
Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable?
Anna-Kathrin Kopetzki
Bertrand Charpentier
Daniel Zügner
Sandhya Giri
Stephan Günnemann
23
45
0
28 Oct 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1