Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.04064
Cited By
Bayesian Graph Neural Networks with Adaptive Connection Sampling
7 June 2020
Arman Hasanzadeh
Ehsan Hajiramezanali
Shahin Boluki
Mingyuan Zhou
N. Duffield
Krishna R. Narayanan
Xiaoning Qian
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Graph Neural Networks with Adaptive Connection Sampling"
32 / 32 papers shown
Title
Effects of Random Edge-Dropping on Over-Squashing in Graph Neural Networks
Jasraj Singh
Keyue Jiang
Brooks Paige
Laura Toni
70
1
0
11 Feb 2025
FedGrAINS: Personalized SubGraph Federated Learning with Adaptive Neighbor Sampling
Emir Ceyani
Han Xie
Baturalp Buyukates
Carl Yang
Salman Avestimehr
FedML
97
0
0
22 Jan 2025
Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations
Richard Bergna
Sergio Calvo-Ordoñez
Felix L. Opolka
Pietro Liò
Jose Miguel Hernandez-Lobato
BDL
39
2
0
28 Aug 2024
Uncertainty in Graph Neural Networks: A Survey
Fangxin Wang
Yuqing Liu
Kay Liu
Yibo Wang
Sourav Medya
Philip S. Yu
AI4CE
48
8
0
11 Mar 2024
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
60
7
0
27 Dec 2023
Graph Convolutional Network with Connectivity Uncertainty for EEG-based Emotion Recognition
Hongxiang Gao
Xiangyao Wang
Zhenghua Chen
Min-man Wu
Zhipeng Cai
Lulu Zhao
Jianqing Li
Chengyu Liu
38
9
0
22 Oct 2023
A Survey on Oversmoothing in Graph Neural Networks
T. Konstantin Rusch
Michael M. Bronstein
Siddhartha Mishra
41
186
0
20 Mar 2023
A Comprehensive Survey on Graph Summarization with Graph Neural Networks
Nasrin Shabani
Jia Wu
Amin Beheshti
Quan.Z Sheng
Jin Foo
Venus Haghighi
Ambreen Hanif
Maryam Shahabikargar
GNN
AI4TS
40
12
0
13 Feb 2023
Understanding and Improving Deep Graph Neural Networks: A Probabilistic Graphical Model Perspective
Jiayuan Chen
Xiang Zhang
Yinfei Xu
Tianli Zhao
Renjie Xie
Wei Xu
GNN
BDL
23
0
0
25 Jan 2023
Distribution Free Prediction Sets for Node Classification
J. Clarkson
AI4CE
43
24
0
26 Nov 2022
JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks
Jian Kang
Qinghai Zhou
Hanghang Tong
UQCV
41
21
0
12 Oct 2022
Robust Node Classification on Graphs: Jointly from Bayesian Label Transition and Topology-based Label Propagation
Jun Zhuang
M. Hasan
36
20
0
21 Aug 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
45
25
0
20 May 2022
A General Framework for quantifying Aleatoric and Epistemic uncertainty in Graph Neural Networks
Sai Munikoti
D. Agarwal
Laya Das
Balasubramaniam Natarajan
BDL
UD
31
13
0
20 May 2022
MoReL: Multi-omics Relational Learning
Arman Hasanzadeh
Ehsan Hajiramezanali
N. Duffield
Xiaoning Qian
24
7
0
15 Mar 2022
Sparsification and Filtering for Spatial-temporal GNN in Multivariate Time-series
Yuanrong Wang
T. Aste
AI4TS
26
10
0
08 Mar 2022
Recent Advances in Reliable Deep Graph Learning: Inherent Noise, Distribution Shift, and Adversarial Attack
Jintang Li
Bingzhe Wu
Chengbin Hou
Guoji Fu
Yatao Bian
Liang Chen
Junzhou Huang
Zibin Zheng
OOD
AAML
32
6
0
15 Feb 2022
Over-smoothing Effect of Graph Convolutional Networks
Fang Sun
36
1
0
30 Jan 2022
Confidence May Cheat: Self-Training on Graph Neural Networks under Distribution Shift
Hongrui Liu
Binbin Hu
Xiao Wang
Chuan Shi
Qing Cui
Jun Zhou
94
55
0
27 Jan 2022
Decoupling the Depth and Scope of Graph Neural Networks
Hanqing Zeng
Muhan Zhang
Yinglong Xia
Ajitesh Srivastava
Andrey Malevich
Rajgopal Kannan
Viktor Prasanna
Long Jin
Ren Chen
GNN
33
144
0
19 Jan 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
41
81
0
26 Oct 2021
TyXe: Pyro-based Bayesian neural nets for Pytorch
H. Ritter
Theofanis Karaletsos
OOD
MU
BDL
31
6
0
01 Oct 2021
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study
Tianlong Chen
Kaixiong Zhou
Keyu Duan
Wenqing Zheng
Peihao Wang
Xia Hu
Zhangyang Wang
AAML
GNN
27
61
0
24 Aug 2021
Dirichlet Energy Constrained Learning for Deep Graph Neural Networks
Kaixiong Zhou
Xiao Shi Huang
Daochen Zha
Rui Chen
Li Li
Soo-Hyun Choi
Xia Hu
GNN
AI4CE
33
113
0
06 Jul 2021
Training Graph Neural Networks with 1000 Layers
Guohao Li
Matthias Muller
Guohao Li
V. Koltun
GNN
AI4CE
51
235
0
14 Jun 2021
Graph Classification by Mixture of Diverse Experts
Fenyu Hu
Liping Wang
Shu Wu
Liang Wang
Tieniu Tan
42
10
0
29 Mar 2021
Sampling methods for efficient training of graph convolutional networks: A survey
Xin Liu
Yurui Lai
Lei Deng
Guoqi Li
Xiaochun Ye
Xiaochun Ye
GNN
29
100
0
10 Mar 2021
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised Classification
Rui Yang
Wenrui Dai
Chenglin Li
Junni Zou
H. Xiong
28
20
0
07 Dec 2020
Uncertainty-aware Attention Graph Neural Network for Defending Adversarial Attacks
Boyuan Feng
Yuke Wang
Zhigang Wang
Yufei Ding
AAML
13
34
0
22 Sep 2020
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
202
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,638
0
03 Jul 2012
1