Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.03824
Cited By
Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing its Gradient Estimator Bias
6 June 2020
Axel Laborieux
M. Ernoult
B. Scellier
Yoshua Bengio
Julie Grollier
D. Querlioz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing its Gradient Estimator Bias"
16 / 16 papers shown
Title
Equilibrium Propagation for Learning in Lagrangian Dynamical Systems
Serge Massar
26
0
0
12 May 2025
Self-Contrastive Forward-Forward Algorithm
Xing Chen
Dongshu Liu
Jérémie Laydevant
Julie Grollier
44
2
0
17 Sep 2024
Scaling SNNs Trained Using Equilibrium Propagation to Convolutional Architectures
Jiaqi Lin
Malyaban Bal
Abhronil Sengupta
42
2
0
04 May 2024
Improving equilibrium propagation without weight symmetry through Jacobian homeostasis
Axel Laborieux
Friedemann Zenke
25
7
0
05 Sep 2023
Correlative Information Maximization: A Biologically Plausible Approach to Supervised Deep Neural Networks without Weight Symmetry
Bariscan Bozkurt
Cengiz Pehlevan
A. Erdogan
35
1
0
07 Jun 2023
Understanding and Improving Optimization in Predictive Coding Networks
Nick Alonso
J. Krichmar
Emre Neftci
73
7
0
23 May 2023
Dual Propagation: Accelerating Contrastive Hebbian Learning with Dyadic Neurons
R. Høier
D. Staudt
Christopher Zach
31
11
0
02 Feb 2023
Hebbian Deep Learning Without Feedback
Adrien Journé
Hector Garcia Rodriguez
Qinghai Guo
Timoleon Moraitis
AAML
31
49
0
23 Sep 2022
Sequence Learning Using Equilibrium Propagation
Malyaban Bal
Abhronil Sengupta
35
9
0
14 Sep 2022
Biologically-inspired neuronal adaptation improves learning in neural networks
Yoshimasa Kubo
Eric Chalmers
Artur Luczak
17
6
0
08 Apr 2022
Error-driven Input Modulation: Solving the Credit Assignment Problem without a Backward Pass
Giorgia Dellaferrera
Gabriel Kreiman
29
53
0
27 Jan 2022
Towards Biologically Plausible Convolutional Networks
Roman Pogodin
Yash Mehta
Timothy Lillicrap
P. Latham
26
22
0
22 Jun 2021
Training Dynamical Binary Neural Networks with Equilibrium Propagation
Jérémie Laydevant
M. Ernoult
D. Querlioz
Julie Grollier
26
16
0
16 Mar 2021
Training Deep Architectures Without End-to-End Backpropagation: A Survey on the Provably Optimal Methods
Shiyu Duan
José C. Príncipe
MQ
38
3
0
09 Jan 2021
Local plasticity rules can learn deep representations using self-supervised contrastive predictions
Bernd Illing
Jean-Paul Ventura
G. Bellec
W. Gerstner
SSL
DRL
59
69
0
16 Oct 2020
Kernelized information bottleneck leads to biologically plausible 3-factor Hebbian learning in deep networks
Roman Pogodin
P. Latham
24
34
0
12 Jun 2020
1