ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.02612
  4. Cited By
Problem-Complexity Adaptive Model Selection for Stochastic Linear
  Bandits

Problem-Complexity Adaptive Model Selection for Stochastic Linear Bandits

4 June 2020
Avishek Ghosh
Abishek Sankararaman
Kannan Ramchandran
ArXivPDFHTML

Papers citing "Problem-Complexity Adaptive Model Selection for Stochastic Linear Bandits"

11 / 11 papers shown
Title
Model selection for contextual bandits
Model selection for contextual bandits
Dylan J. Foster
A. Krishnamurthy
Haipeng Luo
OffRL
161
90
0
03 Jun 2019
OSOM: A simultaneously optimal algorithm for multi-armed and linear
  contextual bandits
OSOM: A simultaneously optimal algorithm for multi-armed and linear contextual bandits
Niladri S. Chatterji
Vidya Muthukumar
Peter L. Bartlett
51
44
0
24 May 2019
Semiparametric Contextual Bandits
Semiparametric Contextual Bandits
A. Krishnamurthy
Zhiwei Steven Wu
Vasilis Syrgkanis
112
44
0
12 Mar 2018
Small-loss bounds for online learning with partial information
Small-loss bounds for online learning with partial information
Thodoris Lykouris
Karthik Sridharan
Éva Tardos
75
41
0
09 Nov 2017
Misspecified Linear Bandits
Misspecified Linear Bandits
Avishek Ghosh
Sayak Ray Chowdhury
Aditya Gopalan
52
66
0
23 Apr 2017
Online Learning Without Prior Information
Online Learning Without Prior Information
Ashok Cutkosky
K. Boahen
ODL
34
74
0
07 Mar 2017
Corralling a Band of Bandit Algorithms
Corralling a Band of Bandit Algorithms
Alekh Agarwal
Haipeng Luo
Behnam Neyshabur
Robert Schapire
141
157
0
19 Dec 2016
Simultaneous Model Selection and Optimization through Parameter-free
  Stochastic Learning
Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning
Francesco Orabona
132
103
0
15 Jun 2014
Minimax Optimal Algorithms for Unconstrained Linear Optimization
Minimax Optimal Algorithms for Unconstrained Linear Optimization
H. B. McMahan
89
42
0
08 Feb 2013
Bandit Theory meets Compressed Sensing for high dimensional Stochastic
  Linear Bandit
Bandit Theory meets Compressed Sensing for high dimensional Stochastic Linear Bandit
Alexandra Carpentier
Rémi Munos
78
102
0
18 May 2012
Margin-adaptive model selection in statistical learning
Margin-adaptive model selection in statistical learning
Sylvain Arlot
Peter L. Bartlett
109
21
0
18 Apr 2008
1