ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10040
9
44

OSOM: A simultaneously optimal algorithm for multi-armed and linear contextual bandits

24 May 2019
Niladri S. Chatterji
Vidya Muthukumar
Peter L. Bartlett
ArXivPDFHTML
Abstract

We consider the stochastic linear (multi-armed) contextual bandit problem with the possibility of hidden simple multi-armed bandit structure in which the rewards are independent of the contextual information. Algorithms that are designed solely for one of the regimes are known to be sub-optimal for the alternate regime. We design a single computationally efficient algorithm that simultaneously obtains problem-dependent optimal regret rates in the simple multi-armed bandit regime and minimax optimal regret rates in the linear contextual bandit regime, without knowing a priori which of the two models generates the rewards. These results are proved under the condition of stochasticity of contextual information over multiple rounds. Our results should be viewed as a step towards principled data-dependent policy class selection for contextual bandits.

View on arXiv
Comments on this paper