ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00979
  4. Cited By
Acme: A Research Framework for Distributed Reinforcement Learning

Acme: A Research Framework for Distributed Reinforcement Learning

1 June 2020
Matthew W. Hoffman
Bobak Shahriari
John Aslanides
Gabriel Barth-Maron
Nikola Momchev
Danila Sinopalnikov
Piotr Stańczyk
Sabela Ramos
Anton Raichuk
Damien Vincent
Léonard Hussenot
Robert Dadashi
Gabriel Dulac-Arnold
Manu Orsini
Alexis Jacq
Johan Ferret
Nino Vieillard
Seyed Kamyar Seyed Ghasemipour
Sertan Girgin
Olivier Pietquin
Feryal M. P. Behbahani
Tamara Norman
A. Abdolmaleki
Albin Cassirer
Fan Yang
Kate Baumli
Sarah Henderson
Abe Friesen
Ruba Haroun
Alexander Novikov
Sergio Gomez Colmenarejo
Serkan Cabi
Çağlar Gülçehre
T. Paine
Srivatsan Srinivasan
A. Cowie
Ziyun Wang
Bilal Piot
Nando de Freitas
ArXivPDFHTML

Papers citing "Acme: A Research Framework for Distributed Reinforcement Learning"

50 / 64 papers shown
Title
Acceleration for Deep Reinforcement Learning using Parallel and
  Distributed Computing: A Survey
Acceleration for Deep Reinforcement Learning using Parallel and Distributed Computing: A Survey
Zhihong Liu
Xin Xu
Peng Qiao
Dongsheng Li
OffRL
22
2
0
08 Nov 2024
Simplifying Deep Temporal Difference Learning
Simplifying Deep Temporal Difference Learning
Matteo Gallici
Mattie Fellows
Benjamin Ellis
B. Pou
Ivan Masmitja
Jakob Foerster
Mario Martin
OffRL
62
14
0
05 Jul 2024
SwiftRL: Towards Efficient Reinforcement Learning on Real
  Processing-In-Memory Systems
SwiftRL: Towards Efficient Reinforcement Learning on Real Processing-In-Memory Systems
Kailash Gogineni
Sai Santosh Dayapule
Juan Gómez Luna
Karthikeya Gogineni
Peng Wei
Tian-Shing Lan
Mohammad Sadrosadati
Onur Mutlu
Guru Venkataramani
50
10
0
07 May 2024
Transductive Reward Inference on Graph
Transductive Reward Inference on Graph
B. Qu
Xiaofeng Cao
Qing-Wu Guo
Yi Chang
Ivor W. Tsang
Chengqi Zhang
OffRL
35
0
0
06 Feb 2024
The Definitive Guide to Policy Gradients in Deep Reinforcement Learning:
  Theory, Algorithms and Implementations
The Definitive Guide to Policy Gradients in Deep Reinforcement Learning: Theory, Algorithms and Implementations
Matthias Lehmann
38
0
0
24 Jan 2024
A Minimaximalist Approach to Reinforcement Learning from Human Feedback
A Minimaximalist Approach to Reinforcement Learning from Human Feedback
Gokul Swamy
Christoph Dann
Rahul Kidambi
Zhiwei Steven Wu
Alekh Agarwal
OffRL
38
94
0
08 Jan 2024
Spreeze: High-Throughput Parallel Reinforcement Learning Framework
Spreeze: High-Throughput Parallel Reinforcement Learning Framework
Jing Hou
Guang Chen
Ruiqi Zhang
Zhijun Li
Shangding Gu
Changjun Jiang
OffRL
24
2
0
11 Dec 2023
GEAR: A GPU-Centric Experience Replay System for Large Reinforcement
  Learning Models
GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models
Hanjing Wang
Man-Kit Sit
Cong He
Ying Wen
Weinan Zhang
Jun Wang
Yaodong Yang
Luo Mai
OffRL
VLM
32
1
0
08 Oct 2023
Android in the Wild: A Large-Scale Dataset for Android Device Control
Android in the Wild: A Large-Scale Dataset for Android Device Control
Christopher Rawles
Alice Li
Daniel Rodriguez
Oriana Riva
Timothy Lillicrap
LM&Ro
28
139
0
19 Jul 2023
A Survey From Distributed Machine Learning to Distributed Deep Learning
A Survey From Distributed Machine Learning to Distributed Deep Learning
Mohammad Dehghani
Zahra Yazdanparast
20
0
0
11 Jul 2023
VIBR: Learning View-Invariant Value Functions for Robust Visual Control
VIBR: Learning View-Invariant Value Functions for Robust Visual Control
Tom Dupuis
Jaonary Rabarisoa
Q. C. Pham
David Filliat
36
0
0
14 Jun 2023
Coherent Soft Imitation Learning
Coherent Soft Imitation Learning
Joe Watson
Sandy H. Huang
Nicholas Heess
32
11
0
25 May 2023
Get Back Here: Robust Imitation by Return-to-Distribution Planning
Get Back Here: Robust Imitation by Return-to-Distribution Planning
Geoffrey Cideron
B. Tabanpour
Sebastian Curi
Sertan Girgin
Léonard Hussenot
Gabriel Dulac-Arnold
M. Geist
Olivier Pietquin
Robert Dadashi
OOD
84
2
0
02 May 2023
Optimal Transport for Offline Imitation Learning
Optimal Transport for Offline Imitation Learning
Yicheng Luo
Zhengyao Jiang
Samuel N. Cohen
Edward Grefenstette
M. Deisenroth
OffRL
35
26
0
24 Mar 2023
Optimal Transport Perturbations for Safe Reinforcement Learning with
  Robustness Guarantees
Optimal Transport Perturbations for Safe Reinforcement Learning with Robustness Guarantees
James Queeney
E. C. Ozcan
I. Paschalidis
Christos G. Cassandras
OOD
OffRL
31
5
0
31 Jan 2023
Risk-Averse Model Uncertainty for Distributionally Robust Safe
  Reinforcement Learning
Risk-Averse Model Uncertainty for Distributionally Robust Safe Reinforcement Learning
James Queeney
M. Benosman
OOD
OffRL
33
5
0
30 Jan 2023
Sample Efficient Deep Reinforcement Learning via Local Planning
Sample Efficient Deep Reinforcement Learning via Local Planning
Dong Yin
S. Thiagarajan
N. Lazić
Nived Rajaraman
Botao Hao
Csaba Szepesvári
22
4
0
29 Jan 2023
PushWorld: A benchmark for manipulation planning with tools and movable
  obstacles
PushWorld: A benchmark for manipulation planning with tools and movable obstacles
Ken Kansky
Skanda Vaidyanath
Scott Swingle
Xinghua Lou
Miguel Lazaro-Gredilla
Dileep George
26
4
0
24 Jan 2023
Distributed Deep Reinforcement Learning: A Survey and A Multi-Player
  Multi-Agent Learning Toolbox
Distributed Deep Reinforcement Learning: A Survey and A Multi-Player Multi-Agent Learning Toolbox
Qiyue Yin
Tongtong Yu
S. Shen
Jun Yang
Meijing Zhao
Kaiqi Huang
Bin Liang
Liangsheng Wang
OffRL
20
13
0
01 Dec 2022
Multi-Agent Reinforcement Learning for Microprocessor Design Space
  Exploration
Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration
Srivatsan Krishnan
Natasha Jaques
Shayegan Omidshafiei
Dan Zhang
Izzeddin Gur
Vijay Janapa Reddi
Aleksandra Faust
29
2
0
29 Nov 2022
Solving Continuous Control via Q-learning
Solving Continuous Control via Q-learning
Tim Seyde
Peter Werner
Wilko Schwarting
Igor Gilitschenski
Martin Riedmiller
Daniela Rus
Markus Wulfmeier
OffRL
LRM
35
22
0
22 Oct 2022
Phantom -- A RL-driven multi-agent framework to model complex systems
Phantom -- A RL-driven multi-agent framework to model complex systems
Leo Ardon
Jared Vann
Deepeka Garg
Thomas Spooner
Sumitra Ganesh
25
7
0
12 Oct 2022
MSRL: Distributed Reinforcement Learning with Dataflow Fragments
MSRL: Distributed Reinforcement Learning with Dataflow Fragments
Huanzhou Zhu
Bo Zhao
Gang Chen
Weifeng Chen
Yijie Chen
Liang Shi
Yaodong Yang
Peter R. Pietzuch
Lei Chen
OffRL
MoE
16
6
0
03 Oct 2022
Lamarckian Platform: Pushing the Boundaries of Evolutionary
  Reinforcement Learning towards Asynchronous Commercial Games
Lamarckian Platform: Pushing the Boundaries of Evolutionary Reinforcement Learning towards Asynchronous Commercial Games
Hui Bai
R. Shen
Yue Lin
Bo Xu
Ran Cheng
VLM
31
5
0
21 Sep 2022
Optimizing Industrial HVAC Systems with Hierarchical Reinforcement
  Learning
Optimizing Industrial HVAC Systems with Hierarchical Reinforcement Learning
William Wong
Praneet Dutta
Octavian Voicu
Yuri Chervonyi
Cosmin Paduraru
Jerry Luo
OffRL
AI4CE
26
5
0
16 Sep 2022
EnvPool: A Highly Parallel Reinforcement Learning Environment Execution
  Engine
EnvPool: A Highly Parallel Reinforcement Learning Environment Execution Engine
Jiayi Weng
Min-Bin Lin
Shengyi Huang
Bo Liu
Denys Makoviichuk
...
Yufan Song
Ting Luo
Yukun Jiang
Zhongwen Xu
Shuicheng Yan
MoE
16
59
0
21 Jun 2022
Fast Population-Based Reinforcement Learning on a Single Machine
Fast Population-Based Reinforcement Learning on a Single Machine
Arthur Flajolet
Claire Bizon Monroc
Karim Beguir
Thomas Pierrot
OffRL
22
10
0
17 Jun 2022
GMI-DRL: Empowering Multi-GPU Deep Reinforcement Learning with GPU
  Spatial Multiplexing
GMI-DRL: Empowering Multi-GPU Deep Reinforcement Learning with GPU Spatial Multiplexing
Yuke Wang
Boyuan Feng
Zhilin Wang
Tong Geng
Ang Li
Yufei Ding
AI4CE
44
0
0
16 Jun 2022
Contrastive Learning as Goal-Conditioned Reinforcement Learning
Contrastive Learning as Goal-Conditioned Reinforcement Learning
Benjamin Eysenbach
Tianjun Zhang
Ruslan Salakhutdinov
Sergey Levine
SSL
OffRL
25
139
0
15 Jun 2022
Action Noise in Off-Policy Deep Reinforcement Learning: Impact on
  Exploration and Performance
Action Noise in Off-Policy Deep Reinforcement Learning: Impact on Exploration and Performance
Jakob J. Hollenstein
Sayantan Auddy
Matteo Saveriano
Erwan Renaudo
J. Piater
31
17
0
08 Jun 2022
Reincarnating Reinforcement Learning: Reusing Prior Computation to
  Accelerate Progress
Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron C. Courville
Marc G. Bellemare
OffRL
OnRL
26
63
0
03 Jun 2022
Incorporating Explicit Uncertainty Estimates into Deep Offline
  Reinforcement Learning
Incorporating Explicit Uncertainty Estimates into Deep Offline Reinforcement Learning
David Brandfonbrener
Rémi Tachet des Combes
Romain Laroche
OffRL
34
5
0
02 Jun 2022
Fast Inference and Transfer of Compositional Task Structures for
  Few-shot Task Generalization
Fast Inference and Transfer of Compositional Task Structures for Few-shot Task Generalization
Sungryull Sohn
Hyunjae Woo
Jongwook Choi
lyubing qiang
Izzeddin Gur
Aleksandra Faust
Honglak Lee
BDL
OffRL
29
3
0
25 May 2022
Chain of Thought Imitation with Procedure Cloning
Chain of Thought Imitation with Procedure Cloning
Mengjiao Yang
Dale Schuurmans
Pieter Abbeel
Ofir Nachum
OffRL
30
29
0
22 May 2022
Revisiting Gaussian mixture critics in off-policy reinforcement
  learning: a sample-based approach
Revisiting Gaussian mixture critics in off-policy reinforcement learning: a sample-based approach
Bobak Shahriari
A. Abdolmaleki
Arunkumar Byravan
A. Friesen
Siqi Liu
Jost Tobias Springenberg
N. Heess
Matthew W. Hoffman
Martin Riedmiller
OffRL
41
9
0
21 Apr 2022
Blocks Assemble! Learning to Assemble with Large-Scale Structured
  Reinforcement Learning
Blocks Assemble! Learning to Assemble with Large-Scale Structured Reinforcement Learning
Seyed Kamyar Seyed Ghasemipour
Daniel Freeman
Byron David
S. Gu
Satoshi Kataoka
Igor Mordatch
OffRL
27
25
0
15 Mar 2022
Intelligent Autonomous Intersection Management
Intelligent Autonomous Intersection Management
Udesh Gunarathna
S. Karunasekera
Renata Borovica-Gajic
E. Tanin
18
3
0
09 Feb 2022
Environment Generation for Zero-Shot Compositional Reinforcement
  Learning
Environment Generation for Zero-Shot Compositional Reinforcement Learning
Izzeddin Gur
Natasha Jaques
Yingjie Miao
Jongwook Choi
Manoj Kumar Tiwari
Honglak Lee
Aleksandra Faust
28
43
0
21 Jan 2022
Conservative Distributional Reinforcement Learning with Safety
  Constraints
Conservative Distributional Reinforcement Learning with Safety Constraints
Hengrui Zhang
Youfang Lin
Sheng Han
Shuo Wang
Kai Lv
OffRL
21
5
0
18 Jan 2022
Godot Reinforcement Learning Agents
Godot Reinforcement Learning Agents
E. Beeching
Jilles Debangoye
Olivier Simonin
Christian Wolf
GP
OnRL
16
5
0
07 Dec 2021
The Impact of Data Distribution on Q-learning with Function
  Approximation
The Impact of Data Distribution on Q-learning with Function Approximation
Pedro P. Santos
Diogo S. Carvalho
A. Sardinha
Francisco S. Melo
OffRL
11
2
0
23 Nov 2021
RLDS: an Ecosystem to Generate, Share and Use Datasets in Reinforcement
  Learning
RLDS: an Ecosystem to Generate, Share and Use Datasets in Reinforcement Learning
Sabela Ramos
Sertan Girgin
Léonard Hussenot
Damien Vincent
Hanna Yakubovich
...
Piotr Stańczyk
Raphaël Marinier
Jeremiah Harmsen
Olivier Pietquin
Nikola Momchev
OffRL
30
23
0
04 Nov 2021
Is Bang-Bang Control All You Need? Solving Continuous Control with
  Bernoulli Policies
Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli Policies
Tim Seyde
Igor Gilitschenski
Wilko Schwarting
Bartolomeo Stellato
Martin Riedmiller
Markus Wulfmeier
Daniela Rus
26
44
0
03 Nov 2021
Continuous Control with Action Quantization from Demonstrations
Continuous Control with Action Quantization from Demonstrations
Robert Dadashi
Léonard Hussenot
Damien Vincent
Sertan Girgin
Anton Raichuk
M. Geist
Olivier Pietquin
OffRL
33
23
0
19 Oct 2021
Collaborating with Humans without Human Data
Collaborating with Humans without Human Data
D. Strouse
Kevin R. McKee
M. Botvinick
Edward Hughes
Richard Everett
124
161
0
15 Oct 2021
Evaluating model-based planning and planner amortization for continuous
  control
Evaluating model-based planning and planner amortization for continuous control
Arunkumar Byravan
Leonard Hasenclever
Piotr Trochim
M. Berk Mirza
Alessandro Davide Ialongo
...
Jost Tobias Springenberg
A. Abdolmaleki
N. Heess
J. Merel
Martin Riedmiller
55
17
0
07 Oct 2021
Dropout Q-Functions for Doubly Efficient Reinforcement Learning
Dropout Q-Functions for Doubly Efficient Reinforcement Learning
Takuya Hiraoka
Takahisa Imagawa
Taisei Hashimoto
Takashi Onishi
Yoshimasa Tsuruoka
11
104
0
05 Oct 2021
Autonomous Blimp Control using Deep Reinforcement Learning
Autonomous Blimp Control using Deep Reinforcement Learning
Y. Liu
Eric Price
Pascal Goldschmid
Michael J. Black
Aamir Ahmad
AI4CE
27
3
0
22 Sep 2021
Implicitly Regularized RL with Implicit Q-Values
Implicitly Regularized RL with Implicit Q-Values
Nino Vieillard
Marcin Andrychowicz
Anton Raichuk
Olivier Pietquin
M. Geist
OffRL
24
9
0
16 Aug 2021
Mastering Visual Continuous Control: Improved Data-Augmented
  Reinforcement Learning
Mastering Visual Continuous Control: Improved Data-Augmented Reinforcement Learning
Denis Yarats
Rob Fergus
A. Lazaric
Lerrel Pinto
OffRL
18
337
0
20 Jul 2021
12
Next