ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00402
  4. Cited By
Doubly-Stochastic Normalization of the Gaussian Kernel is Robust to
  Heteroskedastic Noise

Doubly-Stochastic Normalization of the Gaussian Kernel is Robust to Heteroskedastic Noise

31 May 2020
Boris Landa
Ronald R. Coifman
Y. Kluger
ArXivPDFHTML

Papers citing "Doubly-Stochastic Normalization of the Gaussian Kernel is Robust to Heteroskedastic Noise"

20 / 20 papers shown
Title
Improving Deep Regression with Tightness
Improving Deep Regression with Tightness
Shihao Zhang
Yuguang Yan
Angela Yao
OOD
84
0
0
13 Feb 2025
Entropic Optimal Transport Eigenmaps for Nonlinear Alignment and Joint
  Embedding of High-Dimensional Datasets
Entropic Optimal Transport Eigenmaps for Nonlinear Alignment and Joint Embedding of High-Dimensional Datasets
Boris Landa
Y. Kluger
Rong Ma
27
0
0
01 Jul 2024
Sketching the Heat Kernel: Using Gaussian Processes to Embed Data
Sketching the Heat Kernel: Using Gaussian Processes to Embed Data
Anna C. Gilbert
Kevin OÑeill
27
0
0
01 Mar 2024
A cutting plane algorithm for globally solving low dimensional k-means
  clustering problems
A cutting plane algorithm for globally solving low dimensional k-means clustering problems
M. Ryner
Jan Kronqvist
Johan Karlsson
21
0
0
21 Feb 2024
Regularised optimal self-transport is approximate Gaussian mixture
  maximum likelihood
Regularised optimal self-transport is approximate Gaussian mixture maximum likelihood
Gilles Mordant
OT
16
2
0
23 Oct 2023
Optimal Transport with Adaptive Regularisation
Optimal Transport with Adaptive Regularisation
Hugues van Assel
Titouan Vayer
Rémi Flamary
Nicolas Courty
OT
27
2
0
04 Oct 2023
Manifold Learning with Sparse Regularised Optimal Transport
Manifold Learning with Sparse Regularised Optimal Transport
Stephen X. Zhang
Gilles Mordant
Tetsuya Matsumoto
Geoffrey Schiebinger
OT
29
11
0
19 Jul 2023
SNEkhorn: Dimension Reduction with Symmetric Entropic Affinities
SNEkhorn: Dimension Reduction with Symmetric Entropic Affinities
Hugues van Assel
Titouan Vayer
Rémi Flamary
Nicolas Courty
25
9
0
23 May 2023
Robust Inference of Manifold Density and Geometry by Doubly Stochastic
  Scaling
Robust Inference of Manifold Density and Geometry by Doubly Stochastic Scaling
Boris Landa
Xiuyuan Cheng
36
6
0
16 Sep 2022
Beyond kNN: Adaptive, Sparse Neighborhood Graphs via Optimal Transport
Beyond kNN: Adaptive, Sparse Neighborhood Graphs via Optimal Transport
Tetsuya Matsumoto
Stephen X. Zhang
Geoffrey Schiebinger
24
5
0
01 Aug 2022
Orthogonalization of data via Gromov-Wasserstein type feedback for
  clustering and visualization
Orthogonalization of data via Gromov-Wasserstein type feedback for clustering and visualization
M. Ryner
Johan Karlsson
DiffM
11
0
0
25 Jul 2022
ManiFeSt: Manifold-based Feature Selection for Small Data Sets
ManiFeSt: Manifold-based Feature Selection for Small Data Sets
David Cohen
Tal Shnitzer
Y. Kluger
Ronen Talmon
17
2
0
18 Jul 2022
Bi-stochastically normalized graph Laplacian: convergence to manifold
  Laplacian and robustness to outlier noise
Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise
Xiuyuan Cheng
Boris Landa
33
3
0
22 Jun 2022
Eigen-convergence of Gaussian kernelized graph Laplacian by manifold
  heat interpolation
Eigen-convergence of Gaussian kernelized graph Laplacian by manifold heat interpolation
Xiuyuan Cheng
Nan Wu
63
29
0
25 Jan 2021
Doubly Stochastic Subspace Clustering
Doubly Stochastic Subspace Clustering
Derek Lim
René Vidal
B. Haeffele
13
17
0
30 Nov 2020
Local Two-Sample Testing over Graphs and Point-Clouds by Random-Walk
  Distributions
Local Two-Sample Testing over Graphs and Point-Clouds by Random-Walk Distributions
Boris Landa
Rihao Qu
Joseph T. Chang
Y. Kluger
12
4
0
06 Nov 2020
A low discrepancy sequence on graphs
A low discrepancy sequence on graphs
A. Cloninger
H. Mhaskar
37
3
0
08 Oct 2020
Spectral convergence of diffusion maps: improved error bounds and an
  alternative normalisation
Spectral convergence of diffusion maps: improved error bounds and an alternative normalisation
Caroline L. Wormell
Sebastian Reich
10
37
0
03 Jun 2020
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
261
3,243
0
24 Nov 2016
Poisson noise reduction with non-local PCA
Poisson noise reduction with non-local PCA
Joseph Salmon
Zachary T. Harmany
Charles-Alban Deledalle
Rebecca Willett
60
313
0
02 Jun 2012
1