ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.03418
12
4

Local Two-Sample Testing over Graphs and Point-Clouds by Random-Walk Distributions

6 November 2020
Boris Landa
Rihao Qu
Joseph T. Chang
Y. Kluger
ArXivPDFHTML
Abstract

Rejecting the null hypothesis in two-sample testing is a fundamental tool for scientific discovery. Yet, aside from concluding that two samples do not come from the same probability distribution, it is often of interest to characterize how the two distributions differ. Given samples from two densities f1f_1f1​ and f0f_0f0​, we consider the task of localizing occurrences of the inequality f1>f0f_1 > f_0f1​>f0​. To avoid the challenges associated with high-dimensional space, we propose a general hypothesis testing framework where hypotheses are formulated adaptively to the data by conditioning on the combined sample from the two densities. We then investigate a special case of this framework where the notion of locality is captured by a random walk on a weighted graph constructed over this combined sample. We derive a tractable testing procedure for this case employing a type of scan statistic, and provide non-asymptotic lower bounds on the power and accuracy of our test to detect whether f1>f0f_1>f_0f1​>f0​ in a local sense. Furthermore, we characterize the test's consistency according to a certain problem-hardness parameter, and show that our test achieves the minimax detection rate for this parameter. We conduct numerical experiments to validate our method, and demonstrate our approach on two real-world applications: detecting and localizing arsenic well contamination across the United States, and analyzing two-sample single-cell RNA sequencing data from melanoma patients.

View on arXiv
Comments on this paper