ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.13107
  4. Cited By
VarFA: A Variational Factor Analysis Framework For Efficient Bayesian
  Learning Analytics

VarFA: A Variational Factor Analysis Framework For Efficient Bayesian Learning Analytics

27 May 2020
Zichao Wang
Yi Gu
Andrew Lan
Richard Baraniuk
ArXivPDFHTML

Papers citing "VarFA: A Variational Factor Analysis Framework For Efficient Bayesian Learning Analytics"

24 / 24 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
212
10,591
0
17 Feb 2020
Variational Item Response Theory: Fast, Accurate, and Expressive
Variational Item Response Theory: Fast, Accurate, and Expressive
Mike Wu
R. Davis
B. Domingue
Chris Piech
Noah D. Goodman
OffRL
62
55
0
01 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
265
42,038
0
03 Dec 2019
Icebreaker: Element-wise Active Information Acquisition with Bayesian
  Deep Latent Gaussian Model
Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model
Wenbo Gong
Sebastian Tschiatschek
Richard Turner
Sebastian Nowozin
José Miguel Hernández-Lobato
Cheng Zhang
BDL
27
19
0
13 Aug 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
66
2,322
0
06 Jun 2019
Flexibly Fair Representation Learning by Disentanglement
Flexibly Fair Representation Learning by Disentanglement
Elliot Creager
David Madras
J. Jacobsen
Marissa A. Weis
Kevin Swersky
T. Pitassi
R. Zemel
FaML
OOD
115
331
0
06 Jun 2019
DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling
  Distributed Practice of Skills
DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling Distributed Practice of Skills
Benoît Choffin
Fabrice Popineau
Yolaine Bourda
Jill-Jênn Vie
CLL
46
88
0
14 May 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
64
275
0
11 Feb 2019
Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing
Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing
Frank Soboczenski
H. Kashima
38
161
0
08 Nov 2018
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial
  VAE
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE
Chao Ma
Sebastian Tschiatschek
Konstantina Palla
José Miguel Hernández-Lobato
Sebastian Nowozin
Cheng Zhang
53
128
0
28 Sep 2018
Deep Knowledge Tracing and Dynamic Student Classification for Knowledge
  Tracing
Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing
Sein Minn
Yi Yu
Michel C. Desmarais
Feida Zhu
Jill-Jênn Vie
AI4Ed
56
101
0
24 Sep 2018
Handling Incomplete Heterogeneous Data using VAEs
Handling Incomplete Heterogeneous Data using VAEs
A. Nazábal
Pablo Martínez Olmos
Zoubin Ghahramani
Isabel Valera
42
345
0
10 Jul 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
44
1,336
0
16 Feb 2018
Variational Autoencoders for Collaborative Filtering
Variational Autoencoders for Collaborative Filtering
Dawen Liang
Rahul G. Krishnan
Matthew D. Hoffman
Tony Jebara
BDL
128
1,222
0
16 Feb 2018
A-NICE-MC: Adversarial Training for MCMC
A-NICE-MC: Adversarial Training for MCMC
Jiaming Song
Shengjia Zhao
Stefano Ermon
BDL
OOD
63
109
0
23 Jun 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRL
CoGe
110
359
0
01 Jun 2017
Dynamic Key-Value Memory Networks for Knowledge Tracing
Dynamic Key-Value Memory Networks for Knowledge Tracing
Jiani Zhang
Xingjian Shi
Irwin King
Dit-Yan Yeung
AI4Ed
KELM
47
612
0
24 Nov 2016
Back to the Basics: Bayesian extensions of IRT outperform neural
  networks for proficiency estimation
Back to the Basics: Bayesian extensions of IRT outperform neural networks for proficiency estimation
Kevin H. Wilson
Yan Karklin
B. Han
Chaitanya Ekanadham
117
115
0
08 Apr 2016
Deep Knowledge Tracing
Deep Knowledge Tracing
Chris Piech
J. Bassen
Jonathan Huang
Surya Ganguli
Mehran Sahami
Leonidas Guibas
Jascha Narain Sohl-Dickstein
AI4Ed
HAI
84
1,145
0
19 Jun 2015
A Complete Recipe for Stochastic Gradient MCMC
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDL
SyDa
52
485
0
15 Jun 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
842
149,474
0
22 Dec 2014
Tag-Aware Ordinal Sparse Factor Analysis for Learning and Content
  Analytics
Tag-Aware Ordinal Sparse Factor Analysis for Learning and Content Analytics
Andrew Lan
Christoph Studer
Andrew E. Waters
Richard G. Baraniuk
39
161
0
18 Dec 2014
Variational MCMC
Variational MCMC
Nando de Freitas
Pedro A. d. F. R. Højen-Sørensen
Michael I. Jordan
Stuart J. Russell
BDL
73
105
0
10 Jan 2013
Nonlinear sequential designs for logistic item response theory models
  with applications to computerized adaptive tests
Nonlinear sequential designs for logistic item response theory models with applications to computerized adaptive tests
Hua-Hua Chang
Z. Ying
44
61
0
10 Jun 2009
1