Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.11739
Cited By
Adversarial NLI for Factual Correctness in Text Summarisation Models
24 May 2020
Mario Barrantes
Benedikt Herudek
Richard Wang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial NLI for Factual Correctness in Text Summarisation Models"
7 / 7 papers shown
Title
A Critical Evaluation of Evaluations for Long-form Question Answering
Fangyuan Xu
Yixiao Song
Mohit Iyyer
Eunsol Choi
ELM
37
97
0
29 May 2023
Just ClozE! A Novel Framework for Evaluating the Factual Consistency Faster in Abstractive Summarization
Yiyang Li
Lei Li
Marina Litvak
N. Vanetik
Dingxing Hu
Yuze Li
Yanquan Zhou
HILM
40
0
0
06 Oct 2022
Don't Say What You Don't Know: Improving the Consistency of Abstractive Summarization by Constraining Beam Search
Daniel King
Zejiang Shen
Nishant Subramani
Daniel S. Weld
Iz Beltagy
Doug Downey
HILM
28
31
0
16 Mar 2022
Investigating Crowdsourcing Protocols for Evaluating the Factual Consistency of Summaries
Xiangru Tang
Alexander R. Fabbri
Haoran Li
Ziming Mao
Griffin Adams
Borui Wang
Asli Celikyilmaz
Yashar Mehdad
Dragomir R. Radev
HILM
13
19
0
19 Sep 2021
Text Summarization with Pretrained Encoders
Yang Liu
Mirella Lapata
MILM
258
1,433
0
22 Aug 2019
Hypothesis Only Baselines in Natural Language Inference
Adam Poliak
Jason Naradowsky
Aparajita Haldar
Rachel Rudinger
Benjamin Van Durme
190
576
0
02 May 2018
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,690
0
28 Feb 2017
1