ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.02804
30
0

Just ClozE! A Novel Framework for Evaluating the Factual Consistency Faster in Abstractive Summarization

6 October 2022
Yiyang Li
Lei Li
Marina Litvak
N. Vanetik
Dingxing Hu
Yuze Li
Yanquan Zhou
    HILM
ArXivPDFHTML
Abstract

The issue of factual consistency in abstractive summarization has received extensive attention in recent years, and the evaluation of factual consistency between summary and document has become an important and urgent task. Most of the current evaluation metrics are adopted from the question answering (QA) or natural language inference (NLI) task. However, the application of QA-based metrics is extremely time-consuming in practice while NLI-based metrics are lack of interpretability. In this paper, we propose a cloze-based evaluation framework called ClozE and show the great potential of the cloze-based metric. It inherits strong interpretability from QA, while maintaining the speed of NLI- level reasoning. We demonstrate that ClozE can reduce the evaluation time by nearly 96% relative to QA-based metrics while retaining their interpretability and performance through experiments on six human-annotated datasets and a meta-evaluation benchmark GO FIGURE (Gabriel et al., 2021). Finally, we discuss three important facets of ClozE in practice, which further shows better overall performance of ClozE compared to other metrics.

View on arXiv
Comments on this paper