ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.10516
  4. Cited By
An analysis on the use of autoencoders for representation learning:
  fundamentals, learning task case studies, explainability and challenges

An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges

21 May 2020
D. Charte
F. Charte
M. J. D. Jesus
Francisco Herrera
    SSL
    OOD
ArXivPDFHTML

Papers citing "An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges"

4 / 4 papers shown
Title
GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
Seungheun Baek
Soyon Park
Y. T. Chok
Mogan Gim
Jaewoo Kang
DRL
47
0
0
31 Jan 2025
Representing Camera Response Function by a Single Latent Variable and
  Fully Connected Neural Network
Representing Camera Response Function by a Single Latent Variable and Fully Connected Neural Network
Yunfeng Zhao
S. Ferguson
Huiyu Zhou
K. Rafferty
13
3
0
08 Sep 2022
Reducing Data Complexity using Autoencoders with Class-informed Loss
  Functions
Reducing Data Complexity using Autoencoders with Class-informed Loss Functions
D. Charte
F. Charte
Francisco Herrera
11
14
0
11 Nov 2021
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
233
674
0
17 Feb 2018
1