Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.10516
Cited By
An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
21 May 2020
D. Charte
F. Charte
M. J. D. Jesus
Francisco Herrera
SSL
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges"
4 / 4 papers shown
Title
GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
Seungheun Baek
Soyon Park
Y. T. Chok
Mogan Gim
Jaewoo Kang
DRL
47
0
0
31 Jan 2025
Representing Camera Response Function by a Single Latent Variable and Fully Connected Neural Network
Yunfeng Zhao
S. Ferguson
Huiyu Zhou
K. Rafferty
13
3
0
08 Sep 2022
Reducing Data Complexity using Autoencoders with Class-informed Loss Functions
D. Charte
F. Charte
Francisco Herrera
11
14
0
11 Nov 2021
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
233
674
0
17 Feb 2018
1