Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.08054
Cited By
Classification vs regression in overparameterized regimes: Does the loss function matter?
16 May 2020
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Classification vs regression in overparameterized regimes: Does the loss function matter?"
50 / 93 papers shown
Title
Structural Entropy Guided Probabilistic Coding
Xiang Huang
Hao Peng
Li Sun
Hui Lin
Chunyang Liu
Jiang Cao
Philip S. Yu
74
0
0
12 Dec 2024
Analyzing Deep Transformer Models for Time Series Forecasting via Manifold Learning
Ilya Kaufman
Omri Azencot
AI4TS
29
2
0
17 Oct 2024
Provable Weak-to-Strong Generalization via Benign Overfitting
David X. Wu
A. Sahai
58
6
0
06 Oct 2024
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying Bandwidth or Dimensionality
Marko Medvedev
Gal Vardi
Nathan Srebro
54
3
0
05 Sep 2024
EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods
Hongcheng Ding
Xuanze Zhao
Zixiao Jiang
Shamsul Nahar Abdullah
Deshinta Arrova Dewi
21
0
0
23 Aug 2024
First-Order Manifold Data Augmentation for Regression Learning
Ilya Kaufman
Omri Azencot
23
3
0
16 Jun 2024
Class-wise Activation Unravelling the Engima of Deep Double Descent
Yufei Gu
28
0
0
13 May 2024
Sharp analysis of out-of-distribution error for "importance-weighted" estimators in the overparameterized regime
Kuo-Wei Lai
Vidya Muthukumar
31
0
0
10 May 2024
On the Benefits of Over-parameterization for Out-of-Distribution Generalization
Yifan Hao
Yong Lin
Difan Zou
Tong Zhang
OODD
OOD
28
4
0
26 Mar 2024
Benign overfitting in leaky ReLU networks with moderate input dimension
Kedar Karhadkar
Erin E. George
Michael Murray
Guido Montúfar
Deanna Needell
MLT
35
2
0
11 Mar 2024
Balanced Data, Imbalanced Spectra: Unveiling Class Disparities with Spectral Imbalance
Chiraag Kaushik
Ran Liu
Chi-Heng Lin
Amrit Khera
Matthew Y Jin
Wenrui Ma
Vidya Muthukumar
Eva L. Dyer
38
3
0
18 Feb 2024
Why do Random Forests Work? Understanding Tree Ensembles as Self-Regularizing Adaptive Smoothers
Alicia Curth
Alan Jeffares
M. Schaar
UQCV
34
11
0
02 Feb 2024
The Surprising Harmfulness of Benign Overfitting for Adversarial Robustness
Yifan Hao
Tong Zhang
AAML
19
4
0
19 Jan 2024
Unraveling the Enigma of Double Descent: An In-depth Analysis through the Lens of Learned Feature Space
Yufei Gu
Xiaoqing Zheng
T. Aste
35
3
0
20 Oct 2023
Transformers as Support Vector Machines
Davoud Ataee Tarzanagh
Yingcong Li
Christos Thrampoulidis
Samet Oymak
35
43
0
31 Aug 2023
Noisy Interpolation Learning with Shallow Univariate ReLU Networks
Nirmit Joshi
Gal Vardi
Nathan Srebro
27
8
0
28 Jul 2023
A Unified Approach to Controlling Implicit Regularization via Mirror Descent
Haoyuan Sun
Khashayar Gatmiry
Kwangjun Ahn
Navid Azizan
AI4CE
10
11
0
24 Jun 2023
Precise Asymptotic Generalization for Multiclass Classification with Overparameterized Linear Models
David X. Wu
A. Sahai
21
2
0
23 Jun 2023
Training shallow ReLU networks on noisy data using hinge loss: when do we overfit and is it benign?
Erin E. George
Michael Murray
W. Swartworth
Deanna Needell
MLT
8
4
0
16 Jun 2023
Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
Tomoya Wakayama
Masaaki Imaizumi
47
1
0
25 May 2023
From Tempered to Benign Overfitting in ReLU Neural Networks
Guy Kornowski
Gilad Yehudai
Ohad Shamir
18
12
0
24 May 2023
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas
David Holzmüller
U. V. Luxburg
Ingo Steinwart
MLT
27
13
0
23 May 2023
New Equivalences Between Interpolation and SVMs: Kernels and Structured Features
Chiraag Kaushik
Andrew D. McRae
Mark A. Davenport
Vidya Muthukumar
20
2
0
03 May 2023
General Loss Functions Lead to (Approximate) Interpolation in High Dimensions
Kuo-Wei Lai
Vidya Muthukumar
16
5
0
13 Mar 2023
Benign Overfitting for Two-layer ReLU Convolutional Neural Networks
Yiwen Kou
Zi-Yuan Chen
Yuanzhou Chen
Quanquan Gu
MLT
47
12
0
07 Mar 2023
Benign Overfitting in Linear Classifiers and Leaky ReLU Networks from KKT Conditions for Margin Maximization
Spencer Frei
Gal Vardi
Peter L. Bartlett
Nathan Srebro
30
22
0
02 Mar 2023
Are Gaussian data all you need? Extents and limits of universality in high-dimensional generalized linear estimation
Luca Pesce
Florent Krzakala
Bruno Loureiro
Ludovic Stephan
16
26
0
17 Feb 2023
Interpolation Learning With Minimum Description Length
N. Manoj
Nathan Srebro
17
4
0
14 Feb 2023
Sketched Ridgeless Linear Regression: The Role of Downsampling
Xin Chen
Yicheng Zeng
Siyue Yang
Qiang Sun
11
7
0
02 Feb 2023
Tight bounds for maximum
ℓ
1
\ell_1
ℓ
1
-margin classifiers
Stefan Stojanovic
Konstantin Donhauser
Fanny Yang
32
0
0
07 Dec 2022
Margin-based sampling in high dimensions: When being active is less efficient than staying passive
A. Tifrea
Jacob Clarysse
Fanny Yang
17
2
0
01 Dec 2022
Evaluating the Impact of Loss Function Variation in Deep Learning for Classification
Simon Dräger
Jannik Dunkelau
24
2
0
28 Oct 2022
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models
Lijia Zhou
Frederic Koehler
Pragya Sur
Danica J. Sutherland
Nathan Srebro
83
9
0
21 Oct 2022
The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective
Chi-Heng Lin
Chiraag Kaushik
Eva L. Dyer
Vidya Muthukumar
19
26
0
10 Oct 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
13
8
0
19 Sep 2022
Intersection of Parallels as an Early Stopping Criterion
Ali Vardasbi
Maarten de Rijke
Mostafa Dehghani
MoMe
28
5
0
19 Aug 2022
SphereFed: Hyperspherical Federated Learning
Xin Dong
S. Zhang
Ang Li
H. T. Kung
FedML
31
19
0
19 Jul 2022
A law of adversarial risk, interpolation, and label noise
Daniel Paleka
Amartya Sanyal
NoLa
AAML
13
9
0
08 Jul 2022
On how to avoid exacerbating spurious correlations when models are overparameterized
Tina Behnia
Ke Wang
Christos Thrampoulidis
31
2
0
25 Jun 2022
Max-Margin Works while Large Margin Fails: Generalization without Uniform Convergence
Margalit Glasgow
Colin Wei
Mary Wootters
Tengyu Ma
36
5
0
16 Jun 2022
Generalization for multiclass classification with overparameterized linear models
Vignesh Subramanian
Rahul Arya
A. Sahai
AI4CE
19
9
0
03 Jun 2022
A Blessing of Dimensionality in Membership Inference through Regularization
Jasper Tan
Daniel LeJeune
Blake Mason
Hamid Javadi
Richard G. Baraniuk
16
18
0
27 May 2022
Fast Rates for Noisy Interpolation Require Rethinking the Effects of Inductive Bias
Konstantin Donhauser
Nicolò Ruggeri
Stefan Stojanovic
Fanny Yang
10
20
0
07 Mar 2022
Benign Overfitting without Linearity: Neural Network Classifiers Trained by Gradient Descent for Noisy Linear Data
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
21
69
0
11 Feb 2022
Error Scaling Laws for Kernel Classification under Source and Capacity Conditions
Hugo Cui
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
38
10
0
29 Jan 2022
Kernel Methods and Multi-layer Perceptrons Learn Linear Models in High Dimensions
Mojtaba Sahraee-Ardakan
M. Emami
Parthe Pandit
S. Rangan
A. Fletcher
20
9
0
20 Jan 2022
Towards Sample-efficient Overparameterized Meta-learning
Yue Sun
Adhyyan Narang
Halil Ibrahim Gulluk
Samet Oymak
Maryam Fazel
BDL
17
24
0
16 Jan 2022
Is Importance Weighting Incompatible with Interpolating Classifiers?
Ke Alexander Wang
Niladri S. Chatterji
Saminul Haque
Tatsunori Hashimoto
11
20
0
24 Dec 2021
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
Tianyang Hu
Jun Wang
Wenjia Wang
Zhenguo Li
UQCV
AAML
25
19
0
07 Dec 2021
Minimax Supervised Clustering in the Anisotropic Gaussian Mixture Model: A new take on Robust Interpolation
Stanislav Minsker
M. Ndaoud
Yiqiu Shen
25
4
0
13 Nov 2021
1
2
Next