47
2

Evaluating the Impact of Loss Function Variation in Deep Learning for Classification

Abstract

The loss function is arguably among the most important hyperparameters for a neural network. Many loss functions have been designed to date, making a correct choice nontrivial. However, elaborate justifications regarding the choice of the loss function are not made in related work. This is, as we see it, an indication of a dogmatic mindset in the deep learning community which lacks empirical foundation. In this work, we consider deep neural networks in a supervised classification setting and analyze the impact the choice of loss function has onto the training result. While certain loss functions perform suboptimally, our work empirically shows that under-represented losses such as the KL Divergence can outperform the State-of-the-Art choices significantly, highlighting the need to include the loss function as a tuned hyperparameter rather than a fixed choice.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.