Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.05955
Cited By
RSO: A Gradient Free Sampling Based Approach For Training Deep Neural Networks
12 May 2020
Rohun Tripathi
Bharat Singh
Re-assign community
ArXiv
PDF
HTML
Papers citing
"RSO: A Gradient Free Sampling Based Approach For Training Deep Neural Networks"
16 / 16 papers shown
Title
Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs
Jonathan Frankle
D. Schwab
Ari S. Morcos
62
142
0
29 Feb 2020
What's Hidden in a Randomly Weighted Neural Network?
Vivek Ramanujan
Mitchell Wortsman
Aniruddha Kembhavi
Ali Farhadi
Mohammad Rastegari
66
356
0
29 Nov 2019
Weight Agnostic Neural Networks
Adam Gaier
David R Ha
OOD
60
241
0
11 Jun 2019
Putting An End to End-to-End: Gradient-Isolated Learning of Representations
Sindy Löwe
Peter O'Connor
Bastiaan S. Veeling
SSL
106
144
0
28 May 2019
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
196
1,270
0
04 Oct 2018
Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data
Yuanzhi Li
Yingyu Liang
MLT
194
653
0
03 Aug 2018
DARTS: Differentiable Architecture Search
Hanxiao Liu
Karen Simonyan
Yiming Yang
185
4,345
0
24 Jun 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
204
3,457
0
09 Mar 2018
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
F. Such
Vashisht Madhavan
Edoardo Conti
Joel Lehman
Kenneth O. Stanley
Jeff Clune
90
691
0
18 Dec 2017
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Tim Salimans
Jonathan Ho
Xi Chen
Szymon Sidor
Ilya Sutskever
92
1,536
0
10 Mar 2017
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
424
5,367
0
05 Nov 2016
Pruning Filters for Efficient ConvNets
Hao Li
Asim Kadav
Igor Durdanovic
H. Samet
H. Graf
3DPC
188
3,693
0
31 Aug 2016
Training Neural Networks Without Gradients: A Scalable ADMM Approach
Gavin Taylor
R. Burmeister
Zheng Xu
Bharat Singh
Ankit B. Patel
Tom Goldstein
ODL
50
276
0
06 May 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
280
18,587
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
1