ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.05659
  4. Cited By
Stillleben: Realistic Scene Synthesis for Deep Learning in Robotics

Stillleben: Realistic Scene Synthesis for Deep Learning in Robotics

12 May 2020
Max Schwarz
Sven Behnke
    3DV
    3DPC
ArXivPDFHTML

Papers citing "Stillleben: Realistic Scene Synthesis for Deep Learning in Robotics"

5 / 5 papers shown
Title
Object-level 3D Semantic Mapping using a Network of Smart Edge Sensors
Object-level 3D Semantic Mapping using a Network of Smart Edge Sensors
Julian Hau
S. Bultmann
Sven Behnke
3DPC
26
4
0
21 Nov 2022
Predicting Physical Object Properties from Video
Predicting Physical Object Properties from Video
M. Link
Max Schwarz
Sven Behnke
18
3
0
02 Jun 2022
DoPose-6D dataset for object segmentation and 6D pose estimation
DoPose-6D dataset for object segmentation and 6D pose estimation
Anas Gouda
Abraham Ghanem
Christopher Reining
3DPC
32
7
0
28 Apr 2022
Kubric: A scalable dataset generator
Kubric: A scalable dataset generator
Klaus Greff
Francois Belletti
Lucas Beyer
Carl Doersch
Yilun Du
...
Ziyu Wang
Tianhao Wu
K. M. Yi
Fangcheng Zhong
Andrea Tagliasacchi
50
250
0
07 Mar 2022
Sim2Real Instance-Level Style Transfer for 6D Pose Estimation
Sim2Real Instance-Level Style Transfer for 6D Pose Estimation
Takuya Ikeda
Suomi Tanishige
Ayako Amma
Michael Sudano
H. Audren
Koichi Nishiwaki
3DPC
3DH
34
8
0
03 Mar 2022
1