ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.03754
  4. Cited By
FEQA: A Question Answering Evaluation Framework for Faithfulness
  Assessment in Abstractive Summarization

FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization

7 May 2020
Esin Durmus
He He
Mona T. Diab
    HILM
ArXivPDFHTML

Papers citing "FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization"

9 / 109 papers shown
Title
Evaluating Factuality in Generation with Dependency-level Entailment
Evaluating Factuality in Generation with Dependency-level Entailment
Tanya Goyal
Greg Durrett
23
147
0
12 Oct 2020
CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural
  Summarization Systems
CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural Summarization Systems
Yiran Chen
Pengfei Liu
Ming Zhong
Zi-Yi Dou
Danqing Wang
Xipeng Qiu
Xuanjing Huang
ELM
27
24
0
11 Oct 2020
Multi-Fact Correction in Abstractive Text Summarization
Multi-Fact Correction in Abstractive Text Summarization
Yue Dong
Shuohang Wang
Zhe Gan
Yu Cheng
Jackie C.K. Cheung
Jingjing Liu
KELM
HILM
15
118
0
06 Oct 2020
Extracting Summary Knowledge Graphs from Long Documents
Extracting Summary Knowledge Graphs from Long Documents
Zeqiu Wu
Rik Koncel-Kedziorski
Mari Ostendorf
Hannaneh Hajishirzi
35
15
0
19 Sep 2020
SummEval: Re-evaluating Summarization Evaluation
SummEval: Re-evaluating Summarization Evaluation
Alexander R. Fabbri
Wojciech Kry'sciñski
Bryan McCann
Caiming Xiong
R. Socher
Dragomir R. Radev
HILM
38
689
0
24 Jul 2020
Evaluation of Text Generation: A Survey
Evaluation of Text Generation: A Survey
Asli Celikyilmaz
Elizabeth Clark
Jianfeng Gao
ELM
LM&MA
19
376
0
26 Jun 2020
Enhancing Factual Consistency of Abstractive Summarization
Enhancing Factual Consistency of Abstractive Summarization
Chenguang Zhu
William Fu-Hinthorn
Ruochen Xu
Qingkai Zeng
Michael Zeng
Xuedong Huang
Meng Jiang
HILM
KELM
193
40
0
19 Mar 2020
Text Summarization with Pretrained Encoders
Text Summarization with Pretrained Encoders
Yang Liu
Mirella Lapata
MILM
258
1,433
0
22 Aug 2019
SummaRuNNer: A Recurrent Neural Network based Sequence Model for
  Extractive Summarization of Documents
SummaRuNNer: A Recurrent Neural Network based Sequence Model for Extractive Summarization of Documents
Ramesh Nallapati
Feifei Zhai
Bowen Zhou
207
1,255
0
14 Nov 2016
Previous
123