ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.09162
21
15

Extracting Summary Knowledge Graphs from Long Documents

19 September 2020
Zeqiu Wu
Rik Koncel-Kedziorski
Mari Ostendorf
Hannaneh Hajishirzi
ArXivPDFHTML
Abstract

Knowledge graphs capture entities and relations from long documents and can facilitate reasoning in many downstream applications. Extracting compact knowledge graphs containing only salient entities and relations is important but challenging for understanding and summarizing long documents. We introduce a new text-to-graph task of predicting summarized knowledge graphs from long documents. We develop a dataset of 200k document/graph pairs using automatic and human annotations. We also develop strong baselines for this task based on graph learning and text summarization, and provide quantitative and qualitative studies of their effect.

View on arXiv
Comments on this paper