ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.02641
  4. Cited By
Incremental Few-Shot Object Detection for Robotics

Incremental Few-Shot Object Detection for Robotics

6 May 2020
Yiting Li
H. Zhu
Sichao Tian
Fan Feng
Jun Ma
C. Teo
Cheng Xiang
P. Vadakkepat
T. Lee
    ObjD
    CLL
ArXivPDFHTML

Papers citing "Incremental Few-Shot Object Detection for Robotics"

6 / 6 papers shown
Title
Detect Everything with Few Examples
Detect Everything with Few Examples
Xinyu Zhang
Yuting Wang
Abdeslam Boularias
ObjD
VLM
32
13
0
22 Sep 2023
Few-Shot Point Cloud Semantic Segmentation via Contrastive
  Self-Supervision and Multi-Resolution Attention
Few-Shot Point Cloud Semantic Segmentation via Contrastive Self-Supervision and Multi-Resolution Attention
Jiahui Wang
H. Zhu
Haoren Guo
Abdullah Al Mamun
Cheng Xiang
T. Lee
3DPC
25
12
0
21 Feb 2023
Frustratingly Simple Few-Shot Object Detection
Frustratingly Simple Few-Shot Object Detection
Xin Wang
Thomas E. Huang
Trevor Darrell
Joseph E. Gonzalez
Feng Yu
ObjD
95
544
0
16 Mar 2020
BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed
  Visual Recognition
BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition
Boyan Zhou
Quan Cui
Xiu-Shen Wei
Zhao-Min Chen
253
782
0
05 Dec 2019
Meta R-CNN : Towards General Solver for Instance-level Few-shot Learning
Meta R-CNN : Towards General Solver for Instance-level Few-shot Learning
Xiaopeng Yan
Ziliang Chen
Anni Xu
Xiaoxi Wang
Xiaodan Liang
Liang Lin
ObjD
171
446
0
28 Sep 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
377
11,700
0
09 Mar 2017
1