ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.01095
  4. Cited By
A Causal View on Robustness of Neural Networks

A Causal View on Robustness of Neural Networks

3 May 2020
Cheng Zhang
Kun Zhang
Yingzhen Li
    CML
    OOD
ArXivPDFHTML

Papers citing "A Causal View on Robustness of Neural Networks"

23 / 23 papers shown
Title
A Robust Adversarial Ensemble with Causal (Feature Interaction) Interpretations for Image Classification
A Robust Adversarial Ensemble with Causal (Feature Interaction) Interpretations for Image Classification
Chunheng Zhao
P. Pisu
G. Comert
N. Begashaw
Varghese Vaidyan
Nina Christine Hubig
AAML
32
0
0
31 Dec 2024
Zero-Shot Learning of Causal Models
Zero-Shot Learning of Causal Models
Divyat Mahajan
Jannes Gladrow
Agrin Hilmkil
Cheng Zhang
M. Scetbon
42
1
0
08 Oct 2024
Certified Causal Defense with Generalizable Robustness
Certified Causal Defense with Generalizable Robustness
Yiran Qiao
Yu Yin
Chen Chen
Jing Ma
AAML
OOD
CML
57
0
0
28 Aug 2024
Measuring the Effect of Causal Disentanglement on the Adversarial
  Robustness of Neural Network Models
Measuring the Effect of Causal Disentanglement on the Adversarial Robustness of Neural Network Models
Preben Ness
D. Marijan
Sunanda Bose
CML
29
0
0
21 Aug 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
57
11
0
29 Jan 2023
Rethinking Causality-driven Robot Tool Segmentation with Temporal
  Constraints
Rethinking Causality-driven Robot Tool Segmentation with Temporal Constraints
Hao Ding
J. Wu
Zhaoshuo Li
Mathias Unberath
CML
38
10
0
30 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
36
11
0
07 Nov 2022
Causal Information Bottleneck Boosts Adversarial Robustness of Deep
  Neural Network
Causal Information Bottleneck Boosts Adversarial Robustness of Deep Neural Network
Hua Hua
Jun Yan
Xi Fang
Weiquan Huang
Huilin Yin
Wancheng Ge
AAML
25
1
0
25 Oct 2022
Adversarial Robustness for Tabular Data through Cost and Utility
  Awareness
Adversarial Robustness for Tabular Data through Cost and Utility Awareness
Klim Kireev
B. Kulynych
Carmela Troncoso
AAML
26
16
0
27 Aug 2022
On the Generalization and Adaption Performance of Causal Models
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CML
OOD
BDL
TTA
31
8
0
09 Jun 2022
Disentanglement and Generalization Under Correlation Shifts
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Jackson Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
39
7
0
29 Dec 2021
Enhancing Model Robustness and Fairness with Causality: A Regularization
  Approach
Enhancing Model Robustness and Fairness with Causality: A Regularization Approach
Zhao Wang
Kai Shu
A. Culotta
OOD
21
14
0
03 Oct 2021
Domain-Specific Bias Filtering for Single Labeled Domain Generalization
Domain-Specific Bias Filtering for Single Labeled Domain Generalization
Junkun Yuan
Xu Ma
Defang Chen
Kun Kuang
Fei Wu
Lanfen Lin
48
23
0
02 Oct 2021
Counterfactual Adversarial Learning with Representation Interpolation
Counterfactual Adversarial Learning with Representation Interpolation
Wen Wang
Wei Ping
Ning Shi
Jinfeng Li
Bingyu Zhu
Xiangyu Liu
Rongxin Zhang
AAML
OOD
CML
21
2
0
10 Sep 2021
Pulling Up by the Causal Bootstraps: Causal Data Augmentation for
  Pre-training Debiasing
Pulling Up by the Causal Bootstraps: Causal Data Augmentation for Pre-training Debiasing
Sindhu C. M. Gowda
Shalmali Joshi
Haoran Zhang
Marzyeh Ghassemi
CML
32
8
0
27 Aug 2021
Adversarial Visual Robustness by Causal Intervention
Adversarial Visual Robustness by Causal Intervention
Kaihua Tang
Ming Tao
Hanwang Zhang
CML
AAML
27
21
0
17 Jun 2021
Embracing the Disharmony in Medical Imaging: A Simple and Effective
  Framework for Domain Adaptation
Embracing the Disharmony in Medical Imaging: A Simple and Effective Framework for Domain Adaptation
Rongguang Wang
Pratik Chaudhari
Christos Davatzikos
OOD
42
49
0
23 Mar 2021
Generalizing to Unseen Domains: A Survey on Domain Generalization
Generalizing to Unseen Domains: A Survey on Domain Generalization
Jindong Wang
Cuiling Lan
Chang-Shu Liu
Yidong Ouyang
Tao Qin
Wang Lu
Yiqiang Chen
Wenjun Zeng
Philip S. Yu
OOD
54
1,177
0
02 Mar 2021
Training a Resilient Q-Network against Observational Interference
Training a Resilient Q-Network against Observational Interference
Chao-Han Huck Yang
I-Te Danny Hung
Ouyang Yi
Pin-Yu Chen
OOD
26
14
0
18 Feb 2021
Learning Causal Semantic Representation for Out-of-Distribution
  Prediction
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
35
104
0
03 Nov 2020
Domain Adaptation as a Problem of Inference on Graphical Models
Domain Adaptation as a Problem of Inference on Graphical Models
Kun Zhang
Biwei Huang
P. Stojanov
Erdun Gao
Qingsong Liu
Clark Glymour
OOD
43
64
0
09 Feb 2020
Generating Natural Language Adversarial Examples
Generating Natural Language Adversarial Examples
M. Alzantot
Yash Sharma
Ahmed Elgohary
Bo-Jhang Ho
Mani B. Srivastava
Kai-Wei Chang
AAML
250
915
0
21 Apr 2018
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,842
0
08 Jul 2016
1