Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.00687
Cited By
v1
v2
v3
v4
v5
v6
v7 (latest)
Open Graph Benchmark: Datasets for Machine Learning on Graphs
2 May 2020
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Open Graph Benchmark: Datasets for Machine Learning on Graphs"
50 / 1,644 papers shown
Title
Probing Graph Representations
Mohammad Sadegh Akhondzadeh
Vijay Lingam
Aleksandar Bojchevski
95
10
0
07 Mar 2023
SUREL+: Moving from Walks to Sets for Scalable Subgraph-based Graph Representation Learning
Haoteng Yin
Muhan Zhang
Jianguo Wang
Pan Li
178
9
0
06 Mar 2023
Graph Positional Encoding via Random Feature Propagation
Moshe Eliasof
Fabrizio Frasca
Beatrice Bevilacqua
Eran Treister
Gal Chechik
Haggai Maron
99
20
0
06 Mar 2023
Towards a GML-Enabled Knowledge Graph Platform
Hussein Abdallah
Essam Mansour
55
3
0
03 Mar 2023
RAFEN -- Regularized Alignment Framework for Embeddings of Nodes
Kamil Tagowski
Piotr Bielak
Jakub Binkowski
Tomasz Kajdanowicz
GNN
57
0
0
03 Mar 2023
HitGNN: High-throughput GNN Training Framework on CPU+Multi-FPGA Heterogeneous Platform
Yi-Chien Lin
Bingyi Zhang
Viktor Prasanna
GNN
54
7
0
02 Mar 2023
Boosting Distributed Full-graph GNN Training with Asynchronous One-bit Communication
Mengdie Zhang
Qi Hu
Peng Sun
Yonggang Wen
Tianwei Zhang
GNN
69
6
0
02 Mar 2023
Specformer: Spectral Graph Neural Networks Meet Transformers
Deyu Bo
Chuan Shi
Lele Wang
Renjie Liao
140
88
0
02 Mar 2023
Diffusing Graph Attention
Daniel Glickman
Eran Yahav
GNN
78
3
0
01 Mar 2023
Are More Layers Beneficial to Graph Transformers?
Haiteng Zhao
Shuming Ma
Dongdong Zhang
Zhi-Hong Deng
Furu Wei
67
14
0
01 Mar 2023
Asymmetric Learning for Graph Neural Network based Link Prediction
Kai-Lang Yao
Wusuo Li
81
2
0
01 Mar 2023
HyScale-GNN: A Scalable Hybrid GNN Training System on Single-Node Heterogeneous Architecture
Yi-Chien Lin
Viktor Prasanna
GNN
67
7
0
01 Mar 2023
Semi-decentralized Inference in Heterogeneous Graph Neural Networks for Traffic Demand Forecasting: An Edge-Computing Approach
Mahmoud Nazzal
Abdallah Khreishah
Joyoung Lee
Shaahin Angizi
Ala I. Al-Fuqaha
Mohsen Guizani
82
9
0
28 Feb 2023
Evaluating Robustness and Uncertainty of Graph Models Under Structural Distributional Shifts
Gleb Bazhenov
Denis Kuznedelev
A. Malinin
Artem Babenko
Liudmila Prokhorenkova
OOD
111
8
0
27 Feb 2023
IGB: Addressing The Gaps In Labeling, Features, Heterogeneity, and Size of Public Graph Datasets for Deep Learning Research
Arpandeep Khatua
Vikram Sharma Mailthody
Bhagyashree Taleka
Tengfei Ma
Xiang Song
Wen-mei W. Hwu
AI4CE
109
39
0
27 Feb 2023
GNNDelete: A General Strategy for Unlearning in Graph Neural Networks
Jiali Cheng
George Dasoulas
Huan He
Chirag Agarwal
Marinka Zitnik
MU
116
38
0
26 Feb 2023
Path Integral Based Convolution and Pooling for Heterogeneous Graph Neural Networks
Lingjie Kong
Yun Liao
GNN
92
1
0
26 Feb 2023
Scalable Neural Network Training over Distributed Graphs
Aashish Kolluri
Sarthak Choudhary
Bryan Hooi
Prateek Saxena
GNN
95
0
0
25 Feb 2023
Graph Neural Networks with Learnable and Optimal Polynomial Bases
Y. Guo
Zhewei Wei
119
33
0
24 Feb 2023
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
Oleg Platonov
Denis Kuznedelev
Michael Diskin
Artem Babenko
Liudmila Prokhorenkova
120
222
0
22 Feb 2023
Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks
Bowen Jin
Yu Zhang
Yu Meng
Jiawei Han
97
31
0
21 Feb 2023
Link Prediction on Latent Heterogeneous Graphs
Trung-Kien Nguyen
Zemin Liu
Yuan Fang
64
10
0
21 Feb 2023
On the Expressivity of Persistent Homology in Graph Learning
Bastian Rieck
Bastian Rieck
88
16
0
20 Feb 2023
G-Signatures: Global Graph Propagation With Randomized Signatures
Bernhard Schafl
Lukas Gruber
Johannes Brandstetter
Sepp Hochreiter
164
2
0
17 Feb 2023
Learning to Substitute Ingredients in Recipes
Bahare Fatemi
Quentin Duval
Rohit Girdhar
M. Drozdzal
Adriana Romero Soriano
49
7
0
15 Feb 2023
Graph Neural Network-Inspired Kernels for Gaussian Processes in Semi-Supervised Learning
Zehao Niu
M. Anitescu
Jing Chen
BDL
42
5
0
12 Feb 2023
How to prepare your task head for finetuning
Yi Ren
Shangmin Guo
Wonho Bae
Danica J. Sutherland
68
14
0
11 Feb 2023
Unnoticeable Backdoor Attacks on Graph Neural Networks
Enyan Dai
Minhua Lin
Xiang Zhang
Suhang Wang
AAML
111
55
0
11 Feb 2023
DRGCN: Dynamic Evolving Initial Residual for Deep Graph Convolutional Networks
Lefei Zhang
Xiaodong Yan
Jianshan He
Ruopeng Li
Wei Chu
GNN
66
13
0
10 Feb 2023
Sketchy: Memory-efficient Adaptive Regularization with Frequent Directions
Vladimir Feinberg
Xinyi Chen
Y. Jennifer Sun
Rohan Anil
Elad Hazan
103
13
0
07 Feb 2023
On the Limitation and Experience Replay for GNNs in Continual Learning
Junwei Su
Difan Zou
Chuan Wu
CLL
131
4
0
07 Feb 2023
Learning to Count Isomorphisms with Graph Neural Networks
Xingtong Yu
Zemin Liu
Yuan Fang
Xinming Zhang
GNN
98
15
0
07 Feb 2023
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Sam Maddrell-Mander
...
D. Beker
Andrew Fitzgibbon
Shenyang Huang
Ladislav Rampášek
Dominique Beaini
119
8
0
06 Feb 2023
Curriculum Graph Machine Learning: A Survey
Haoyang Li
Xin Eric Wang
Wenwu Zhu
98
16
0
06 Feb 2023
Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural Networks
Shuai Zhang
Ming Wang
Pin-Yu Chen
Sijia Liu
Songtao Lu
Miaoyuan Liu
MLT
118
17
0
06 Feb 2023
Energy-based Out-of-Distribution Detection for Graph Neural Networks
Qitian Wu
Yiting Chen
Chenxiao Yang
Junchi Yan
OODD
129
68
0
06 Feb 2023
Spectral Augmentations for Graph Contrastive Learning
Amur Ghose
Yingxue Zhang
Jianye Hao
Mark Coates
90
9
0
06 Feb 2023
PubGraph: A Large-Scale Scientific Knowledge Graph
Kian Ahrabian
Xinwei Du
Richard Delwin Myloth
Arun Baalaaji Sankar Ananthan
Jay Pujara
53
4
0
04 Feb 2023
A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge Graphs
Xingyue Huang
Miguel Romero
.Ismail .Ilkan Ceylan
Pablo Barceló
73
27
0
04 Feb 2023
Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
Yunchong Song
Cheng Zhou
Xinbing Wang
Zhouhan Lin
99
72
0
03 Feb 2023
LazyGNN: Large-Scale Graph Neural Networks via Lazy Propagation
Rui Xue
Haoyu Han
MohamadAli Torkamani
Jian Pei
Xiaorui Liu
GNN
110
22
0
03 Feb 2023
Causal Lifting and Link Prediction
Leonardo Cotta
Beatrice Bevilacqua
Nesreen Ahmed
Bruno Ribeiro
CML
109
5
0
02 Feb 2023
Graph Neural Networks for temporal graphs: State of the art, open challenges, and opportunities
Antonio Longa
Veronica Lachi
G. Santin
Monica Bianchini
Bruno Lepri
Pietro Lio
F. Scarselli
Andrea Passerini
AI4CE
90
63
0
02 Feb 2023
GraphAGILE: An FPGA-based Overlay Accelerator for Low-latency GNN Inference
Bingyi Zhang
Hanqing Zeng
Viktor Prasanna
GNN
99
20
0
02 Feb 2023
Neural Common Neighbor with Completion for Link Prediction
Xiyuan Wang
Hao-Ting Yang
Muhan Zhang
GNN
LRM
141
55
0
02 Feb 2023
Hierarchical Classification of Research Fields in the "Web of Science" Using Deep Learning
Susie Xi Rao
P. Egger
Ce Zhang
99
3
0
01 Feb 2023
Knowledge Distillation on Graphs: A Survey
Yijun Tian
Shichao Pei
Xiangliang Zhang
Chuxu Zhang
Nitesh Chawla
82
35
0
01 Feb 2023
A
2
Q
\rm A^2Q
A
2
Q
: Aggregation-Aware Quantization for Graph Neural Networks
Zeyu Zhu
Fanrong Li
Zitao Mo
Qinghao Hu
Gang Li
Zejian Liu
Xiaoyao Liang
Jian Cheng
GNN
MQ
82
4
0
01 Feb 2023
OrthoReg: Improving Graph-regularized MLPs via Orthogonality Regularization
Hengrui Zhang
Shen Wang
V. Ioannidis
Soji Adeshina
Jiani Zhang
Xiao Qin
Christos Faloutsos
Da Zheng
George Karypis
Philip S. Yu
78
4
0
31 Jan 2023
Transformers Meet Directed Graphs
Simon Geisler
Yujia Li
D. Mankowitz
A. Cemgil
Stephan Günnemann
Cosmin Paduraru
111
39
0
31 Jan 2023
Previous
1
2
3
...
18
19
20
...
31
32
33
Next