ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.00615
  4. Cited By
A Dual-Dimer Method for Training Physics-Constrained Neural Networks
  with Minimax Architecture

A Dual-Dimer Method for Training Physics-Constrained Neural Networks with Minimax Architecture

1 May 2020
Dehao Liu
Yan Wang
ArXivPDFHTML

Papers citing "A Dual-Dimer Method for Training Physics-Constrained Neural Networks with Minimax Architecture"

16 / 16 papers shown
Title
Dual-Balancing for Physics-Informed Neural Networks
Dual-Balancing for Physics-Informed Neural Networks
Chenhong Zhou
Jie Chen
Zaifeng Yang
Ching Eng Png
PINN
AI4CE
35
0
0
16 May 2025
The Finite Element Neural Network Method: One Dimensional Study
The Finite Element Neural Network Method: One Dimensional Study
Mohammed Abda
Elsa Piollet
Christopher Blake
Frédérick P. Gosselin
76
0
0
21 Jan 2025
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
32
2
0
04 Oct 2024
Improved physics-informed neural network in mitigating gradient related
  failures
Improved physics-informed neural network in mitigating gradient related failures
Pancheng Niu
Yongming Chen
Jun Guo
Yuqian Zhou
Minfu Feng
Yanchao Shi
PINN
AI4CE
29
0
0
28 Jul 2024
Unveiling the optimization process of Physics Informed Neural Networks:
  How accurate and competitive can PINNs be?
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
Label Propagation Training Schemes for Physics-Informed Neural Networks
  and Gaussian Processes
Label Propagation Training Schemes for Physics-Informed Neural Networks and Gaussian Processes
Ming Zhong
Dehao Liu
Raymundo Arroyave
U. Braga-Neto
AI4CE
SSL
26
1
0
08 Apr 2024
Residual-based attention and connection to information bottleneck theory
  in PINNs
Residual-based attention and connection to information bottleneck theory in PINNs
Sokratis J. Anagnostopoulos
Juan Diego Toscano
Nikos Stergiopulos
George Karniadakis
32
20
0
01 Jul 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
35
75
0
07 May 2023
Feature-adjacent multi-fidelity physics-informed machine learning for
  partial differential equations
Feature-adjacent multi-fidelity physics-informed machine learning for partial differential equations
Wenqian Chen
P. Stinis
OOD
AI4CE
38
7
0
21 Mar 2023
Temporal Consistency Loss for Physics-Informed Neural Networks
Temporal Consistency Loss for Physics-Informed Neural Networks
Sukirt Thakur
M. Raissi
H. Mitra
A. Ardekani
PINN
33
10
0
30 Jan 2023
Deep learning for full-field ultrasonic characterization
Deep learning for full-field ultrasonic characterization
Yang Xu
Fatemeh Pourahmadian
Jian Song
Congli Wang
AI4CE
34
4
0
06 Jan 2023
Investigating and Mitigating Failure Modes in Physics-informed Neural
  Networks (PINNs)
Investigating and Mitigating Failure Modes in Physics-informed Neural Networks (PINNs)
S. Basir
PINN
AI4CE
31
21
0
20 Sep 2022
Adaptive Self-supervision Algorithms for Physics-informed Neural
  Networks
Adaptive Self-supervision Algorithms for Physics-informed Neural Networks
Shashank Subramanian
Robert M. Kirby
Michael W. Mahoney
A. Gholami
30
25
0
08 Jul 2022
Improved Training of Physics-Informed Neural Networks with Model
  Ensembles
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Katsiaryna Haitsiukevich
Alexander Ilin
PINN
39
23
0
11 Apr 2022
Scientific Machine Learning through Physics-Informed Neural Networks:
  Where we are and What's next
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,190
0
14 Jan 2022
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention
  Mechanism
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
28
444
0
07 Sep 2020
1