ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.14455
  4. Cited By
Sparse Cholesky factorization by Kullback-Leibler minimization

Sparse Cholesky factorization by Kullback-Leibler minimization

29 April 2020
Florian Schäfer
Matthias Katzfuss
H. Owhadi
ArXivPDFHTML

Papers citing "Sparse Cholesky factorization by Kullback-Leibler minimization"

17 / 17 papers shown
Title
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
46
0
0
02 Mar 2025
Learning non-Gaussian spatial distributions via Bayesian transport maps with parametric shrinkage
Learning non-Gaussian spatial distributions via Bayesian transport maps with parametric shrinkage
Anirban Chakraborty
Matthias Katzfuss
OT
26
1
0
28 Sep 2024
Computational Hypergraph Discovery, a Gaussian Process framework for
  connecting the dots
Computational Hypergraph Discovery, a Gaussian Process framework for connecting the dots
Théo Bourdais
Pau Batlle
Xianjin Yang
Ricardo Baptista
Nicolas Rouquette
H. Owhadi
21
0
0
28 Nov 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
34
17
0
08 May 2023
Gaussian Process Hydrodynamics
Gaussian Process Hydrodynamics
H. Owhadi
24
1
0
21 Sep 2022
Scalable Spatio-Temporal Smoothing via Hierarchical Sparse Cholesky
  Decomposition
Scalable Spatio-Temporal Smoothing via Hierarchical Sparse Cholesky Decomposition
M. Jurek
Matthias Katzfuss
14
9
0
19 Jul 2022
Variational Bayesian inference for CP tensor completion with side
  information
Variational Bayesian inference for CP tensor completion with side information
S. Budzinskiy
N. Zamarashkin
13
1
0
24 Jun 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian
  Processes
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
18
10
0
02 Mar 2022
Ordered conditional approximation of Potts models
Ordered conditional approximation of Potts models
Anirban Chakraborty
Matthias Katzfuss
J. Guinness
TPM
13
1
0
13 Oct 2021
Finite Element Representations of Gaussian Processes: Balancing
  Numerical and Statistical Accuracy
Finite Element Representations of Gaussian Processes: Balancing Numerical and Statistical Accuracy
D. Sanz-Alonso
Ruiyi Yang
18
12
0
06 Sep 2021
Learning Partial Differential Equations in Reproducing Kernel Hilbert
  Spaces
Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
George Stepaniants
49
15
0
26 Aug 2021
Learning particle swarming models from data with Gaussian processes
Learning particle swarming models from data with Gaussian processes
Jinchao Feng
Charles Kulick
Yunxiang Ren
Sui Tang
26
5
0
04 Jun 2021
Scalable Bayesian computation for crossed and nested hierarchical models
Scalable Bayesian computation for crossed and nested hierarchical models
O. Papaspiliopoulos
Timothée Stumpf-Fétizon
Giacomo Zanella
37
10
0
19 Mar 2021
Bayesian nonstationary and nonparametric covariance estimation for large
  spatial data
Bayesian nonstationary and nonparametric covariance estimation for large spatial data
Brian Kidd
Matthias Katzfuss
9
14
0
10 Dec 2020
Unifying Compactly Supported and Matern Covariance Functions in Spatial
  Statistics
Unifying Compactly Supported and Matern Covariance Functions in Spatial Statistics
M. Bevilacqua
Christian Caamaño-Carrillo
Emilio Porcu
14
27
0
06 Aug 2020
Scaled Vecchia approximation for fast computer-model emulation
Scaled Vecchia approximation for fast computer-model emulation
Matthias Katzfuss
J. Guinness
E. Lawrence
14
40
0
01 May 2020
Vecchia-Laplace approximations of generalized Gaussian processes for big
  non-Gaussian spatial data
Vecchia-Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data
Daniel Zilber
Matthias Katzfuss
19
34
0
18 Jun 2019
1