ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11820
  4. Cited By
Decoupling Global and Local Representations via Invertible Generative
  Flows

Decoupling Global and Local Representations via Invertible Generative Flows

12 April 2020
Xuezhe Ma
X. Kong
Shanghang Zhang
Eduard H. Hovy
    DRL
ArXivPDFHTML

Papers citing "Decoupling Global and Local Representations via Invertible Generative Flows"

3 / 3 papers shown
Title
Conditional Synthetic Data Generation for Robust Machine Learning
  Applications with Limited Pandemic Data
Conditional Synthetic Data Generation for Robust Machine Learning Applications with Limited Pandemic Data
Hari Prasanna Das
Ryan Tran
Japjot Singh
Xiangyu Yue
G. Tison
Alberto L. Sangiovanni-Vincentelli
C. Spanos
OOD
MedIm
57
51
0
14 Sep 2021
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
306
10,378
0
12 Dec 2018
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
272
2,552
0
25 Jan 2016
1