ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11238
  4. Cited By
Learning Constrained Dynamics with Gauss Principle adhering Gaussian
  Processes

Learning Constrained Dynamics with Gauss Principle adhering Gaussian Processes

23 April 2020
A. R. Geist
Sebastian Trimpe
ArXivPDFHTML

Papers citing "Learning Constrained Dynamics with Gauss Principle adhering Gaussian Processes"

6 / 6 papers shown
Title
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
K. Ensinger
Sebastian Ziesche
Sebastian Trimpe
34
1
0
06 Sep 2023
Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge
  with Data-Driven Control
Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge with Data-Driven Control
Adam J. Thorpe
Cyrus Neary
Franck Djeumou
Meeko Oishi
Ufuk Topcu
35
7
0
09 Jan 2023
Incorporating Sum Constraints into Multitask Gaussian Processes
Incorporating Sum Constraints into Multitask Gaussian Processes
Philipp Pilar
Carl Jidling
Thomas B. Schon
Niklas Wahlström
TPM
21
3
0
03 Feb 2022
Learning-enhanced robust controller synthesis with rigorous statistical
  and control-theoretic guarantees
Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees
Christian Fiedler
C. Scherer
Sebastian Trimpe
24
15
0
07 May 2021
Practical and Rigorous Uncertainty Bounds for Gaussian Process
  Regression
Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression
Christian Fiedler
C. Scherer
Sebastian Trimpe
GP
26
65
0
06 May 2021
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
89
271
0
24 Feb 2014
1