ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.10710
  4. Cited By
Deeply Uncertain: Comparing Methods of Uncertainty Quantification in
  Deep Learning Algorithms

Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms

22 April 2020
J. Caldeira
Brian D. Nord
    BDL
    UQCV
    UD
ArXivPDFHTML

Papers citing "Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms"

22 / 22 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
205
0
0
04 May 2025
Geometry-Informed Neural Operator Transformer
Geometry-Informed Neural Operator Transformer
Qibang Liu
Vincient Zhong
Hadi Meidani
Diab Abueidda
S. Koric
Philippe Geubelle
AI4CE
46
1
0
28 Apr 2025
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
Arthur Pignet
Chiara Regniez
John Klein
72
1
0
30 Oct 2024
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
S. Chatterjee
Franziska Gaidzik
Alessandro Sciarra
Hendrik Mattern
G. Janiga
Oliver Speck
Andreas Nürnberger
S. Pathiraja
52
0
0
25 Dec 2023
Quantification of Uncertainty with Adversarial Models
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Günter Klambauer
Sepp Hochreiter
UQCV
47
14
0
06 Jul 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
38
75
0
07 May 2023
Fairness Uncertainty Quantification: How certain are you that the model
  is fair?
Fairness Uncertainty Quantification: How certain are you that the model is fair?
Abhishek Roy
P. Mohapatra
34
5
0
27 Apr 2023
Applications of AI in Astronomy
Applications of AI in Astronomy
S. Djorgovski
Ashish Mahabal
Matthew Graham
K. Polsterer
A. Krone-Martins
26
2
0
03 Dec 2022
Artificial intelligence approaches for materials-by-design of energetic
  materials: state-of-the-art, challenges, and future directions
Artificial intelligence approaches for materials-by-design of energetic materials: state-of-the-art, challenges, and future directions
Joseph B. Choi
Phong C. H. Nguyen
O. Sen
H. Udaykumar
Stephen Seung-Yeob Baek
PINN
AI4CE
29
11
0
15 Nov 2022
A view on model misspecification in uncertainty quantification
A view on model misspecification in uncertainty quantification
Yuko Kato
David Tax
Marco Loog
30
3
0
30 Oct 2022
Density Regression and Uncertainty Quantification with Bayesian Deep
  Noise Neural Networks
Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks
Daiwei Zhang
Tianci Liu
Jian Kang
BDL
UQCV
43
2
0
12 Jun 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
35
2
0
27 May 2022
Self-Normalized Density Map (SNDM) for Counting Microbiological Objects
Self-Normalized Density Map (SNDM) for Counting Microbiological Objects
K. Graczyk
J. Pawlowski
Sylwia Majchrowska
Tomasz Golan
28
9
0
15 Mar 2022
Machine Learning and Cosmology
Machine Learning and Cosmology
C. Dvorkin
S. Mishra-Sharma
Brian D. Nord
V. A. Villar
Camille Avestruz
...
A. Ćiprijanović
Andrew J. Connolly
L. Garrison
G. Narayan
F. Villaescusa-Navarro
AI4CE
34
12
0
15 Mar 2022
A framework for benchmarking uncertainty in deep regression
A framework for benchmarking uncertainty in deep regression
F. Schmähling
Jörg Martin
Clemens Elster
UQCV
40
8
0
10 Sep 2021
The information of attribute uncertainties: what convolutional neural
  networks can learn about errors in input data
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
Natália Villa Nova Rodrigues
L. Abramo
Nina Sumiko Tomita Hirata
24
6
0
10 Aug 2021
Uncertainty Quantification by Ensemble Learning for Computational
  Optical Form Measurements
Uncertainty Quantification by Ensemble Learning for Computational Optical Form Measurements
L. Hoffmann
I. Fortmeier
Clemens Elster
UQCV
25
28
0
01 Mar 2021
Advances in Electron Microscopy with Deep Learning
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
42
2
0
04 Jan 2021
DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
  using Deep Learning
DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts using Deep Learning
Dimitrios Tanoglidis
A. Ćiprijanović
A. Drlica-Wagner
18
15
0
24 Nov 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
278
5,695
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,640
0
03 Jul 2012
1