Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.10710
Cited By
Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms
22 April 2020
J. Caldeira
Brian D. Nord
BDL
UQCV
UD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms"
22 / 22 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
205
0
0
04 May 2025
Geometry-Informed Neural Operator Transformer
Qibang Liu
Vincient Zhong
Hadi Meidani
Diab Abueidda
S. Koric
Philippe Geubelle
AI4CE
46
1
0
28 Apr 2025
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
Arthur Pignet
Chiara Regniez
John Klein
72
1
0
30 Oct 2024
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
S. Chatterjee
Franziska Gaidzik
Alessandro Sciarra
Hendrik Mattern
G. Janiga
Oliver Speck
Andreas Nürnberger
S. Pathiraja
52
0
0
25 Dec 2023
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Günter Klambauer
Sepp Hochreiter
UQCV
47
14
0
06 Jul 2023
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
38
75
0
07 May 2023
Fairness Uncertainty Quantification: How certain are you that the model is fair?
Abhishek Roy
P. Mohapatra
34
5
0
27 Apr 2023
Applications of AI in Astronomy
S. Djorgovski
Ashish Mahabal
Matthew Graham
K. Polsterer
A. Krone-Martins
26
2
0
03 Dec 2022
Artificial intelligence approaches for materials-by-design of energetic materials: state-of-the-art, challenges, and future directions
Joseph B. Choi
Phong C. H. Nguyen
O. Sen
H. Udaykumar
Stephen Seung-Yeob Baek
PINN
AI4CE
29
11
0
15 Nov 2022
A view on model misspecification in uncertainty quantification
Yuko Kato
David Tax
Marco Loog
30
3
0
30 Oct 2022
Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks
Daiwei Zhang
Tianci Liu
Jian Kang
BDL
UQCV
43
2
0
12 Jun 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
35
2
0
27 May 2022
Self-Normalized Density Map (SNDM) for Counting Microbiological Objects
K. Graczyk
J. Pawlowski
Sylwia Majchrowska
Tomasz Golan
28
9
0
15 Mar 2022
Machine Learning and Cosmology
C. Dvorkin
S. Mishra-Sharma
Brian D. Nord
V. A. Villar
Camille Avestruz
...
A. Ćiprijanović
Andrew J. Connolly
L. Garrison
G. Narayan
F. Villaescusa-Navarro
AI4CE
34
12
0
15 Mar 2022
A framework for benchmarking uncertainty in deep regression
F. Schmähling
Jörg Martin
Clemens Elster
UQCV
40
8
0
10 Sep 2021
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
Natália Villa Nova Rodrigues
L. Abramo
Nina Sumiko Tomita Hirata
24
6
0
10 Aug 2021
Uncertainty Quantification by Ensemble Learning for Computational Optical Form Measurements
L. Hoffmann
I. Fortmeier
Clemens Elster
UQCV
25
28
0
01 Mar 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
42
2
0
04 Jan 2021
DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts using Deep Learning
Dimitrios Tanoglidis
A. Ćiprijanović
A. Drlica-Wagner
18
15
0
24 Nov 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
278
5,695
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,640
0
03 Jul 2012
1