ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.05718
  4. Cited By
Principal Neighbourhood Aggregation for Graph Nets

Principal Neighbourhood Aggregation for Graph Nets

12 April 2020
Gabriele Corso
Luca Cavalleri
Dominique Beaini
Pietro Lió
Petar Velickovic
    GNN
ArXivPDFHTML

Papers citing "Principal Neighbourhood Aggregation for Graph Nets"

50 / 119 papers shown
Title
Flaky Performances when Pretraining on Relational Databases
Flaky Performances when Pretraining on Relational Databases
Shengchao Liu
David Vazquez
Jian Tang
Pierre-Andre Noel
26
2
0
09 Nov 2022
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant
  Aggregator Network for Particle Physics
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics
A. Bogatskiy
Timothy Hoffman
David W. Miller
Jan T. Offermann
16
30
0
01 Nov 2022
TuneUp: A Simple Improved Training Strategy for Graph Neural Networks
TuneUp: A Simple Improved Training Strategy for Graph Neural Networks
Weihua Hu
Kaidi Cao
Kexin Huang
E-Wen Huang
Karthik Subbian
Kenji Kawaguchi
J. Leskovec
29
0
0
26 Oct 2022
RulE: Knowledge Graph Reasoning with Rule Embedding
RulE: Knowledge Graph Reasoning with Rule Embedding
Xiaojuan Tang
Song-Chun Zhu
Yitao Liang
Muhan Zhang
15
2
0
24 Oct 2022
Boosting the Cycle Counting Power of Graph Neural Networks with
  I$^2$-GNNs
Boosting the Cycle Counting Power of Graph Neural Networks with I2^22-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
84
47
0
22 Oct 2022
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
139
410
0
04 Oct 2022
MLPInit: Embarrassingly Simple GNN Training Acceleration with MLP
  Initialization
MLPInit: Embarrassingly Simple GNN Training Acceleration with MLP Initialization
Xiaotian Han
Tong Zhao
Yozen Liu
Xia Hu
Neil Shah
GNN
55
36
0
30 Sep 2022
Multimodal learning with graphs
Multimodal learning with graphs
Yasha Ektefaie
George Dasoulas
Ayush Noori
Maha Farhat
Marinka Zitnik
51
82
0
07 Sep 2022
GNN4REL: Graph Neural Networks for Predicting Circuit Reliability
  Degradation
GNN4REL: Graph Neural Networks for Predicting Circuit Reliability Degradation
Lilas Alrahis
J. Knechtel
F. Klemme
H. Amrouch
Ozgur Sinanoglu
34
21
0
04 Aug 2022
A Graph Isomorphism Network with Weighted Multiple Aggregators for
  Speech Emotion Recognition
A Graph Isomorphism Network with Weighted Multiple Aggregators for Speech Emotion Recognition
Ying Hu
Yu Tang
Hao-Ming Huang
Liang He
26
5
0
03 Jul 2022
Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
  Analysis
Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis
Hejie Cui
Wei Dai
Yanqiao Zhu
Xiaoxiao Li
Lifang He
Carl Yang
71
78
0
30 Jun 2022
Agent-based Graph Neural Networks
Agent-based Graph Neural Networks
Karolis Martinkus
Pál András Papp
Benedikt Schesch
Roger Wattenhofer
LLMAG
GNN
29
17
0
22 Jun 2022
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Hanchen Wang
Jean Kaddour
Shengchao Liu
Jian Tang
Joan Lasenby
Qi Liu
27
20
0
16 Jun 2022
A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs
A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs
Zhaocheng Zhu
Xinyu Yuan
Mikhail Galkin
Sophie Xhonneux
Ming Zhang
Maxime Gazeau
Jian Tang
GNN
LRM
31
36
0
07 Jun 2022
An Empirical Study of Retrieval-enhanced Graph Neural Networks
An Empirical Study of Retrieval-enhanced Graph Neural Networks
Dingmin Wang
Shengchao Liu
Hanchen Wang
Bernardo Cuenca Grau
Linfeng Song
Jian Tang
Song Le
Qi Liu
13
0
0
01 Jun 2022
The CLRS Algorithmic Reasoning Benchmark
The CLRS Algorithmic Reasoning Benchmark
Petar Velivcković
Adria Puigdomenech Badia
David Budden
Razvan Pascanu
Andrea Banino
Mikhail Dashevskiy
R. Hadsell
Charles Blundell
161
88
0
31 May 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
A. Luu
Guy Wolf
Dominique Beaini
57
514
0
25 May 2022
High-Order Pooling for Graph Neural Networks with Tensor Decomposition
High-Order Pooling for Graph Neural Networks with Tensor Decomposition
Chenqing Hua
Guillaume Rabusseau
Jian Tang
72
25
0
24 May 2022
Expressiveness and Approximation Properties of Graph Neural Networks
Expressiveness and Approximation Properties of Graph Neural Networks
Floris Geerts
Juan L. Reutter
13
65
0
10 Apr 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for
  Molecule Design
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
31
86
0
28 Mar 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
50
40
0
25 Mar 2022
Neural Message Passing for Objective-Based Uncertainty Quantification
  and Optimal Experimental Design
Neural Message Passing for Objective-Based Uncertainty Quantification and Optimal Experimental Design
Qihua Chen
Xuejin Chen
Hyun-Myung Woo
Byung-Jun Yoon
18
2
0
14 Mar 2022
Sign and Basis Invariant Networks for Spectral Graph Representation
  Learning
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
Derek Lim
Joshua Robinson
Lingxiao Zhao
Tess E. Smidt
S. Sra
Haggai Maron
Stefanie Jegelka
49
141
0
25 Feb 2022
Equilibrium Aggregation: Encoding Sets via Optimization
Equilibrium Aggregation: Encoding Sets via Optimization
Sergey Bartunov
F. Fuchs
Timothy Lillicrap
19
7
0
25 Feb 2022
Generalizing Aggregation Functions in GNNs:High-Capacity GNNs via
  Nonlinear Neighborhood Aggregators
Generalizing Aggregation Functions in GNNs:High-Capacity GNNs via Nonlinear Neighborhood Aggregators
Beibei Wang
Bo Jiang
AI4CE
11
2
0
18 Feb 2022
A Survey of Pretraining on Graphs: Taxonomy, Methods, and Applications
A Survey of Pretraining on Graphs: Taxonomy, Methods, and Applications
Jun-Xiong Xia
Yanqiao Zhu
Yuanqi Du
Stan Z. Li
VLM
30
41
0
16 Feb 2022
Structure-Aware Transformer for Graph Representation Learning
Structure-Aware Transformer for Graph Representation Learning
Dexiong Chen
Leslie O’Bray
Karsten M. Borgwardt
28
236
0
07 Feb 2022
Graph-Coupled Oscillator Networks
Graph-Coupled Oscillator Networks
T. Konstantin Rusch
B. Chamberlain
J. Rowbottom
S. Mishra
M. Bronstein
31
102
0
04 Feb 2022
Interpretable and Generalizable Graph Learning via Stochastic Attention
  Mechanism
Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
Siqi Miao
Miaoyuan Liu
Pan Li
14
197
0
31 Jan 2022
GRPE: Relative Positional Encoding for Graph Transformer
GRPE: Relative Positional Encoding for Graph Transformer
Wonpyo Park
Woonggi Chang
Donggeon Lee
Juntae Kim
Seung-won Hwang
41
74
0
30 Jan 2022
Representing Long-Range Context for Graph Neural Networks with Global
  Attention
Representing Long-Range Context for Graph Neural Networks with Global Attention
Zhanghao Wu
Paras Jain
Matthew A. Wright
Azalia Mirhoseini
Joseph E. Gonzalez
Ion Stoica
GNN
40
258
0
21 Jan 2022
High-Level Synthesis Performance Prediction using GNNs: Benchmarking,
  Modeling, and Advancing
High-Level Synthesis Performance Prediction using GNNs: Benchmarking, Modeling, and Advancing
Nan Wu
Hang Yang
Yuan Xie
Pan Li
Cong Hao
20
52
0
18 Jan 2022
OOD-GNN: Out-of-Distribution Generalized Graph Neural Network
OOD-GNN: Out-of-Distribution Generalized Graph Neural Network
Haoyang Li
Xin Eric Wang
Ziwei Zhang
Wenwu Zhu
OODD
OOD
26
97
0
07 Dec 2021
Directional Message Passing on Molecular Graphs via Synthetic
  Coordinates
Directional Message Passing on Molecular Graphs via Synthetic Coordinates
Johannes Klicpera
Chandan Yeshwanth
Stephan Günnemann
42
35
0
08 Nov 2021
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
  Vector Quantization
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization
Mucong Ding
Kezhi Kong
Jingling Li
Chen Zhu
John P. Dickerson
Furong Huang
Tom Goldstein
GNN
MQ
33
47
0
27 Oct 2021
3D Infomax improves GNNs for Molecular Property Prediction
3D Infomax improves GNNs for Molecular Property Prediction
Hannes Stärk
Dominique Beaini
Gabriele Corso
Prudencio Tossou
Christian Dallago
Stephan Günnemann
Pietro Lió
AI4CE
30
203
0
08 Oct 2021
From Stars to Subgraphs: Uplifting Any GNN with Local Structure
  Awareness
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
Lingxiao Zhao
Wei Jin
L. Akoglu
Neil Shah
GNN
24
160
0
07 Oct 2021
Pre-training Molecular Graph Representation with 3D Geometry
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
120
302
0
07 Oct 2021
Equivariant Subgraph Aggregation Networks
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
53
175
0
06 Oct 2021
Top-N: Equivariant set and graph generation without exchangeability
Top-N: Equivariant set and graph generation without exchangeability
Clément Vignac
P. Frossard
BDL
65
34
0
05 Oct 2021
Permute Me Softly: Learning Soft Permutations for Graph Representations
Permute Me Softly: Learning Soft Permutations for Graph Representations
Giannis Nikolentzos
George Dasoulas
Michalis Vazirgiannis
GNN
34
9
0
05 Oct 2021
Reconstruction for Powerful Graph Representations
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
130
78
0
01 Oct 2021
IGLU: Efficient GCN Training via Lazy Updates
IGLU: Efficient GCN Training via Lazy Updates
S. Narayanan
Aditya Sinha
Prateek Jain
Purushottam Kar
Sundararajan Sellamanickam
BDL
52
9
0
28 Sep 2021
Graph Neural Networks for Graph Drawing
Graph Neural Networks for Graph Drawing
Matteo Tiezzi
Gabriele Ciravegna
Marco Gori
26
20
0
21 Sep 2021
Node Feature Kernels Increase Graph Convolutional Network Robustness
Node Feature Kernels Increase Graph Convolutional Network Robustness
M. Seddik
Changmin Wu
J. Lutzeyer
Michalis Vazirgiannis
AAML
27
8
0
04 Sep 2021
Integrating Transductive And Inductive Embeddings Improves Link
  Prediction Accuracy
Integrating Transductive And Inductive Embeddings Improves Link Prediction Accuracy
Chitrank Gupta
Yash Jain
A. De
Soumen Chakrabarti
AI4CE
21
4
0
23 Aug 2021
Global Self-Attention as a Replacement for Graph Convolution
Global Self-Attention as a Replacement for Graph Convolution
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
37
122
0
07 Aug 2021
Uncertainty-Based Dynamic Graph Neighborhoods For Medical Segmentation
Uncertainty-Based Dynamic Graph Neighborhoods For Medical Segmentation
U. Demir
Atahan Ozer
Y. Sahin
Gözde B. Ünal
22
3
0
06 Aug 2021
HistoCartography: A Toolkit for Graph Analytics in Digital Pathology
HistoCartography: A Toolkit for Graph Analytics in Digital Pathology
Guillaume Jaume
Pushpak Pati
Valentin Anklin
A. Foncubierta
M. Gabrani
29
45
0
21 Jul 2021
A Survey on Graph-Based Deep Learning for Computational Histopathology
A Survey on Graph-Based Deep Learning for Computational Histopathology
David Ahmedt-Aristizabal
M. Armin
Simon Denman
Clinton Fookes
L. Petersson
GNN
AI4CE
19
107
0
01 Jul 2021
Previous
123
Next