ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.05199
  4. Cited By
Hamiltonian Dynamics for Real-World Shape Interpolation

Hamiltonian Dynamics for Real-World Shape Interpolation

10 April 2020
Marvin Eisenberger
Daniel Cremers
ArXivPDFHTML

Papers citing "Hamiltonian Dynamics for Real-World Shape Interpolation"

5 / 5 papers shown
Title
A Differentiable Material Point Method Framework for Shape Morphing
A Differentiable Material Point Method Framework for Shape Morphing
Michael Xu
Chang-Yong Song
David I. W. Levin
David Hyde
31
1
0
24 Sep 2024
Elastic shape analysis of surfaces with second-order Sobolev metrics: a
  comprehensive numerical framework
Elastic shape analysis of surfaces with second-order Sobolev metrics: a comprehensive numerical framework
Emmanuel Hartman
Yashil Sukurdeep
E. Klassen
N. Charon
Martin Bauer
35
34
0
08 Apr 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
  Go
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go
Marvin Eisenberger
David Novotny
Gael Kerchenbaum
Patrick Labatut
Natalia Neverova
Daniel Cremers
Andrea Vedaldi
3DH
3DPC
20
67
0
17 Jun 2021
3D-CODED : 3D Correspondences by Deep Deformation
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
132
325
0
13 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
263
1,812
0
25 Nov 2016
1