Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.04276
Cited By
nPINNs: nonlocal Physics-Informed Neural Networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications
8 April 2020
G. Pang
M. DÉlia
M. Parks
George Karniadakis
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"nPINNs: nonlocal Physics-Informed Neural Networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications"
15 / 15 papers shown
Title
A physics-informed transformer neural operator for learning generalized solutions of initial boundary value problems
Sumanth Kumar Boya
Deepak Subramani
AI4CE
99
0
0
12 Dec 2024
Separable Physics-Informed Neural Networks for the solution of elasticity problems
V. A. Es'kin
Danil V. Davydov
Julia V. Guréva
Alexey O. Malkhanov
Mikhail E. Smorkalov
PINN
AI4CE
27
2
0
24 Jan 2024
Approximation of Solution Operators for High-dimensional PDEs
Nathan Gaby
Xiaojing Ye
30
0
0
18 Jan 2024
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology
Qingsong Xu
Yilei Shi
Jonathan Bamber
Ye Tuo
Ralf Ludwig
Xiao Xiang Zhu
AI4CE
20
10
0
08 Oct 2023
Branched Latent Neural Maps
M. Salvador
Alison Lesley Marsden
38
4
0
04 Aug 2023
Monte Carlo PINNs: deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations
Ling Guo
Hao Wu
Xiao-Jun Yu
Tao Zhou
PINN
AI4CE
29
58
0
16 Mar 2022
An extended physics informed neural network for preliminary analysis of parametric optimal control problems
N. Demo
M. Strazzullo
G. Rozza
PINN
31
33
0
26 Oct 2021
DySMHO: Data-Driven Discovery of Governing Equations for Dynamical Systems via Moving Horizon Optimization
F. Lejarza
M. Baldea
AI4CE
27
38
0
30 Jul 2021
Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
29
42
0
25 Jun 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Solving Inverse Stochastic Problems from Discrete Particle Observations Using the Fokker-Planck Equation and Physics-informed Neural Networks
Xiaoli Chen
Liu Yang
Jinqiao Duan
George Karniadakis
10
80
0
24 Aug 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
33
878
0
28 Jul 2020
Data-driven learning of robust nonlocal physics from high-fidelity synthetic data
Huaiqian You
Yue Yu
Nathaniel Trask
Mamikon A. Gulian
M. DÉlia
19
35
0
17 May 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
377
11,700
0
09 Mar 2017
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
271
5,327
0
05 Nov 2016
1