ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.03237
  4. Cited By
How Do You Act? An Empirical Study to Understand Behavior of Deep
  Reinforcement Learning Agents

How Do You Act? An Empirical Study to Understand Behavior of Deep Reinforcement Learning Agents

7 April 2020
Richard Meyes
Moritz Schneider
Tobias Meisen
ArXivPDFHTML

Papers citing "How Do You Act? An Empirical Study to Understand Behavior of Deep Reinforcement Learning Agents"

14 / 14 papers shown
Title
Challenges of Real-World Reinforcement Learning
Challenges of Real-World Reinforcement Learning
Gabriel Dulac-Arnold
D. Mankowitz
Todd Hester
OffRL
69
545
0
29 Apr 2019
Ablation Studies in Artificial Neural Networks
Ablation Studies in Artificial Neural Networks
Richard Meyes
Melanie Lu
Constantin Waubert de Puiseau
Tobias Meisen
39
212
0
24 Jan 2019
Human-level performance in first-person multiplayer games with
  population-based deep reinforcement learning
Human-level performance in first-person multiplayer games with population-based deep reinforcement learning
Max Jaderberg
Wojciech M. Czarnecki
Iain Dunning
Luke Marris
Guy Lever
...
Joel Z Leibo
David Silver
Demis Hassabis
Koray Kavukcuoglu
T. Graepel
OffRL
71
717
0
03 Jul 2018
UMAP: Uniform Manifold Approximation and Projection for Dimension
  Reduction
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes
John Healy
James Melville
118
9,312
0
09 Feb 2018
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
55
1,514
0
11 Apr 2017
Data-efficient Deep Reinforcement Learning for Dexterous Manipulation
Data-efficient Deep Reinforcement Learning for Dexterous Manipulation
I. Popov
N. Heess
Timothy Lillicrap
Roland Hafner
Gabriel Barth-Maron
Matej Vecerík
Thomas Lampe
Yuval Tassa
Tom Erez
Martin Riedmiller
OffRL
62
264
0
10 Apr 2017
Understanding trained CNNs by indexing neuron selectivity
Understanding trained CNNs by indexing neuron selectivity
Ivet Rafegas
M. Vanrell
Luís A. Alexandre
Guillem Arias
FAtt
30
41
0
01 Feb 2017
Pruning Filters for Efficient ConvNets
Pruning Filters for Efficient ConvNets
Hao Li
Asim Kadav
Igor Durdanovic
H. Samet
H. Graf
3DPC
175
3,687
0
31 Aug 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
285
10,412
0
21 Jul 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
181
5,056
0
05 Jun 2016
Towards Better Analysis of Deep Convolutional Neural Networks
Towards Better Analysis of Deep Convolutional Neural Networks
Mengchen Liu
Jiaxin Shi
Zerui Li
Chongxuan Li
Jun Zhu
Shixia Liu
HAI
72
473
0
24 Apr 2016
Graying the black box: Understanding DQNs
Graying the black box: Understanding DQNs
Tom Zahavy
Nir Ben-Zrihem
Shie Mannor
63
263
0
08 Feb 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
210
13,174
0
09 Sep 2015
Visualizing and Understanding Recurrent Networks
Visualizing and Understanding Recurrent Networks
A. Karpathy
Justin Johnson
Li Fei-Fei
HAI
89
1,100
0
05 Jun 2015
1