ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.02658
  4. Cited By
Geometrically Principled Connections in Graph Neural Networks

Geometrically Principled Connections in Graph Neural Networks

6 April 2020
Shunwang Gong
Mehdi Bahri
M. Bronstein
Stefanos Zafeiriou
    GNNAI4CE
ArXiv (abs)PDFHTML

Papers citing "Geometrically Principled Connections in Graph Neural Networks"

18 / 18 papers shown
Title
SpiralNet++: A Fast and Highly Efficient Mesh Convolution Operator
SpiralNet++: A Fast and Highly Efficient Mesh Convolution Operator
Shunwang Gong
Lei Chen
M. Bronstein
Stefanos Zafeiriou
3DH
101
148
0
13 Nov 2019
Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape
  Representation Learning and Generation
Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape Representation Learning and Generation
Giorgos Bouritsas
Sergiy Bokhnyak
Stylianos Ploumpis
M. Bronstein
Stefanos Zafeiriou
MedIm3DH
68
165
0
08 May 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaMLGNNAI4TSAI4CE
780
8,554
0
03 Jan 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
243
7,681
0
01 Oct 2018
A Simple Approach to Intrinsic Correspondence Learning on Unstructured
  3D Meshes
A Simple Approach to Intrinsic Correspondence Learning on Unstructured 3D Meshes
I. Lim
A.C.A. Dielen
M. Campen
Leif Kobbelt
62
95
0
18 Sep 2018
Semi-supervised User Geolocation via Graph Convolutional Networks
Semi-supervised User Geolocation via Graph Convolutional Networks
Afshin Rahimi
Trevor Cohn
Timothy Baldwin
GNNSSL
74
158
0
22 Apr 2018
Dynamic Graph CNN for Learning on Point Clouds
Dynamic Graph CNN for Learning on Point Clouds
Yue Wang
Yongbin Sun
Ziwei Liu
Sanjay E. Sarma
M. Bronstein
Justin Solomon
GNN3DPC
257
6,168
0
24 Jan 2018
Deeper Insights into Graph Convolutional Networks for Semi-Supervised
  Learning
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
Qimai Li
Zhichao Han
Xiao-Ming Wu
GNNSSL
189
2,828
0
22 Jan 2018
Sparse Approximation of 3D Meshes using the Spectral Geometry of the
  Hamiltonian Operator
Sparse Approximation of 3D Meshes using the Spectral Geometry of the Hamiltonian Operator
Yoni Choukroun
Gautam Pai
Ron Kimmel
53
9
0
07 Jul 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
415
1,824
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
810
3,291
0
24 Nov 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
353
7,669
0
30 Jun 2016
Learning shape correspondence with anisotropic convolutional neural
  networks
Learning shape correspondence with anisotropic convolutional neural networks
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
M. Bronstein
3DPC
173
509
0
20 May 2016
Multi-Scale Context Aggregation by Dilated Convolutions
Multi-Scale Context Aggregation by Dilated Convolutions
Feng Yu
V. Koltun
SSeg
271
8,453
0
23 Nov 2015
Dense Human Body Correspondences Using Convolutional Networks
Dense Human Body Correspondences Using Convolutional Networks
Lingyu Wei
Qi-Xing Huang
Duygu Ceylan
E. Vouga
Hao Li
3DH
150
206
0
18 Nov 2015
Training Very Deep Networks
Training Very Deep Networks
R. Srivastava
Klaus Greff
Jürgen Schmidhuber
161
1,685
0
22 Jul 2015
Deep Convolutional Networks on Graph-Structured Data
Deep Convolutional Networks on Graph-Structured Data
Mikael Henaff
Joan Bruna
Yann LeCun
GNN
157
1,587
0
16 Jun 2015
Coupled quasi-harmonic bases
Coupled quasi-harmonic bases
Artiom Kovnatsky
M. Bronstein
A. Bronstein
K. Glashoff
Ron Kimmel
112
200
0
28 Sep 2012
1