Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.14053
Cited By
Inverting Gradients -- How easy is it to break privacy in federated learning?
31 March 2020
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inverting Gradients -- How easy is it to break privacy in federated learning?"
29 / 229 papers shown
Title
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
38
145
0
25 Oct 2021
Towards General Deep Leakage in Federated Learning
Jiahui Geng
Yongli Mou
Feifei Li
Qing Li
Oya Beyan
Stefan Decker
Chunming Rong
FedML
25
54
0
18 Oct 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
40
16
0
20 Sep 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
32
100
0
10 Aug 2021
Private Retrieval, Computing and Learning: Recent Progress and Future Challenges
S. Ulukus
Salman Avestimehr
Michael C. Gastpar
S. Jafar
Ravi Tandon
Chao Tian
FedML
35
64
0
30 Jul 2021
Defending against Reconstruction Attack in Vertical Federated Learning
Jiankai Sun
Yuanshun Yao
Weihao Gao
Junyuan Xie
Chong-Jun Wang
AAML
FedML
24
28
0
21 Jul 2021
Gradient-Leakage Resilient Federated Learning
Wenqi Wei
Ling Liu
Yanzhao Wu
Gong Su
Arun Iyengar
FedML
19
81
0
02 Jul 2021
Federated Learning with Buffered Asynchronous Aggregation
John Nguyen
Kshitiz Malik
Hongyuan Zhan
Ashkan Yousefpour
Michael G. Rabbat
Mani Malek
Dzmitry Huba
FedML
33
289
0
11 Jun 2021
Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix
Maximilian Lam
Gu-Yeon Wei
David Brooks
Vijay Janapa Reddi
Michael Mitzenmacher
FedML
15
63
0
10 Jun 2021
Rethinking Architecture Design for Tackling Data Heterogeneity in Federated Learning
Liangqiong Qu
Yuyin Zhou
Paul Pu Liang
Yingda Xia
Feifei Wang
Ehsan Adeli
L. Fei-Fei
D. Rubin
FedML
AI4CE
19
176
0
10 Jun 2021
Vertical Federated Learning without Revealing Intersection Membership
Jiankai Sun
Xin Yang
Yuanshun Yao
Aonan Zhang
Weihao Gao
Junyuan Xie
Chong-Jun Wang
FedML
31
37
0
10 Jun 2021
Privacy-Preserving Federated Learning on Partitioned Attributes
Shuang Zhang
Liyao Xiang
Xi Yu
Pengzhi Chu
Yingqi Chen
Chen Cen
L. Wang
FedML
25
2
0
29 Apr 2021
From Distributed Machine Learning to Federated Learning: A Survey
Ji Liu
Jizhou Huang
Yang Zhou
Xuhong Li
Shilei Ji
Haoyi Xiong
Dejing Dou
FedML
OOD
56
244
0
29 Apr 2021
Property Inference Attacks on Convolutional Neural Networks: Influence and Implications of Target Model's Complexity
Mathias Parisot
Balázs Pejó
Dayana Spagnuelo
MIACV
27
33
0
27 Apr 2021
See through Gradients: Image Batch Recovery via GradInversion
Hongxu Yin
Arun Mallya
Arash Vahdat
J. Álvarez
Jan Kautz
Pavlo Molchanov
FedML
25
460
0
15 Apr 2021
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses
Micah Goldblum
Dimitris Tsipras
Chulin Xie
Xinyun Chen
Avi Schwarzschild
D. Song
A. Madry
Bo-wen Li
Tom Goldstein
SILM
27
270
0
18 Dec 2020
Privacy-preserving medical image analysis
Alexander Ziller
Jonathan Passerat-Palmbach
T. Ryffel
Dmitrii Usynin
Andrew Trask
...
Jason V. Mancuso
Marcus R. Makowski
Daniel Rueckert
R. Braren
Georgios Kaissis
26
8
0
10 Dec 2020
Privacy Amplification by Decentralization
Edwige Cyffers
A. Bellet
FedML
49
39
0
09 Dec 2020
Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective
Jingwei Sun
Ang Li
Binghui Wang
Huanrui Yang
Hai Li
Yiran Chen
FedML
27
163
0
08 Dec 2020
Distributed Additive Encryption and Quantization for Privacy Preserving Federated Deep Learning
Hangyu Zhu
Rui Wang
Yaochu Jin
K. Liang
Jianting Ning
FedML
35
46
0
25 Nov 2020
A Federated Learning Approach to Anomaly Detection in Smart Buildings
Raed Abdel Sater
A. Ben Hamza
17
121
0
20 Oct 2020
R-GAP: Recursive Gradient Attack on Privacy
Junyi Zhu
Matthew Blaschko
FedML
14
132
0
15 Oct 2020
Federated Learning for Computational Pathology on Gigapixel Whole Slide Images
Ming Y. Lu
Dehan Kong
Jana Lipkova
Richard J. Chen
Rajendra Singh
Drew F. K. Williamson
Tiffany Y. Chen
Faisal Mahmood
FedML
MedIm
31
168
0
21 Sep 2020
Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching
Jonas Geiping
Liam H. Fowl
Yifan Jiang
W. Czaja
Gavin Taylor
Michael Moeller
Tom Goldstein
AAML
21
215
0
04 Sep 2020
Byzantine-Resilient Secure Federated Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
19
238
0
21 Jul 2020
Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks
Lixin Fan
Kam Woh Ng
Ce Ju
Tianyu Zhang
Chang Liu
Chee Seng Chan
Qiang Yang
MIACV
17
63
0
20 Jun 2020
Introducing the VoicePrivacy Initiative
N. Tomashenko
B. M. L. Srivastava
Xin Wang
Emmanuel Vincent
A. Nautsch
...
Nicholas W. D. Evans
J. Patino
J. Bonastre
Paul-Gauthier Noé
Massimiliano Todisco
40
128
0
04 May 2020
A Framework for Evaluating Gradient Leakage Attacks in Federated Learning
Wenqi Wei
Ling Liu
Margaret Loper
Ka-Ho Chow
Mehmet Emre Gursoy
Stacey Truex
Yanzhao Wu
FedML
23
146
0
22 Apr 2020
Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
27
289
0
11 Feb 2020
Previous
1
2
3
4
5