Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.14053
Cited By
Inverting Gradients -- How easy is it to break privacy in federated learning?
31 March 2020
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inverting Gradients -- How easy is it to break privacy in federated learning?"
50 / 229 papers shown
Title
A Survey on Gradient Inversion: Attacks, Defenses and Future Directions
Rui Zhang
Song Guo
Junxiao Wang
Xin Xie
Dacheng Tao
35
36
0
15 Jun 2022
Deep Leakage from Model in Federated Learning
Zihao Zhao
Mengen Luo
Wenbo Ding
FedML
26
14
0
10 Jun 2022
Gradient Obfuscation Gives a False Sense of Security in Federated Learning
Kai Yue
Richeng Jin
Chau-Wai Wong
D. Baron
H. Dai
FedML
36
46
0
08 Jun 2022
Rate Distortion Tradeoff in Private Read Update Write in Federated Submodel Learning
Sajani Vithana
S. Ulukus
FedML
34
8
0
07 Jun 2022
Subject Membership Inference Attacks in Federated Learning
Anshuman Suri
Pallika H. Kanani
Virendra J. Marathe
Daniel W. Peterson
30
25
0
07 Jun 2022
Private Federated Submodel Learning with Sparsification
Sajani Vithana
S. Ulukus
FedML
26
10
0
31 May 2022
Secure Federated Clustering
Songze Li
Sizai Hou
Baturalp Buyukates
A. Avestimehr
FedML
23
9
0
31 May 2022
Recovering Private Text in Federated Learning of Language Models
Samyak Gupta
Yangsibo Huang
Zexuan Zhong
Tianyu Gao
Kai Li
Danqi Chen
FedML
40
75
0
17 May 2022
FLAD: Adaptive Federated Learning for DDoS Attack Detection
Roberto Doriguzzi-Corin
Domenico Siracusa
FedML
42
61
0
13 May 2022
On Conditioning the Input Noise for Controlled Image Generation with Diffusion Models
Vedant Singh
Surgan Jandial
Ayush Chopra
Siddharth Ramesh
Balaji Krishnamurthy
V. Balasubramanian
DiffM
32
16
0
08 May 2022
Training Mixed-Domain Translation Models via Federated Learning
Peyman Passban
Tanya Roosta
Rahul Gupta
Ankit R. Chadha
Clement Chung
FedML
AI4CE
29
18
0
03 May 2022
AGIC: Approximate Gradient Inversion Attack on Federated Learning
Jin Xu
Chi Hong
Jiyue Huang
L. Chen
Jérémie Decouchant
AAML
FedML
31
21
0
28 Apr 2022
IOP-FL: Inside-Outside Personalization for Federated Medical Image Segmentation
Meirui Jiang
Hongzheng Yang
Chen Cheng
Qianming Dou
37
32
0
16 Apr 2022
FederatedScope: A Flexible Federated Learning Platform for Heterogeneity
Yuexiang Xie
Zhen Wang
Dawei Gao
Daoyuan Chen
Liuyi Yao
Weirui Kuang
Yaliang Li
Bolin Ding
Jingren Zhou
FedML
27
88
0
11 Apr 2022
HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a Collaborative IoT Intrusion Detection
Mohanad Sarhan
Wai Weng Lo
S. Layeghy
Marius Portmann
26
59
0
08 Apr 2022
Multi-Task Distributed Learning using Vision Transformer with Random Patch Permutation
Sangjoon Park
Jong Chul Ye
FedML
MedIm
44
19
0
07 Apr 2022
SwiftAgg+: Achieving Asymptotically Optimal Communication Loads in Secure Aggregation for Federated Learning
Tayyebeh Jahani-Nezhad
M. Maddah-ali
Songze Li
Giuseppe Caire
FedML
34
45
0
24 Mar 2022
Adaptive Aggregation For Federated Learning
K.R. Jayaram
Vinod Muthusamy
Gegi Thomas
Ashish Verma
Mark Purcell
FedML
33
16
0
23 Mar 2022
Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation
An Xu
Wenqi Li
Pengfei Guo
Dong Yang
H. Roth
Ali Hatamizadeh
Can Zhao
Daguang Xu
Heng-Chiao Huang
Ziyue Xu
FedML
38
51
0
18 Mar 2022
Auto-FedRL: Federated Hyperparameter Optimization for Multi-institutional Medical Image Segmentation
Pengfei Guo
Dong Yang
Ali Hatamizadeh
An Xu
Ziyue Xu
...
F. Patella
Elvira Stellato
G. Carrafiello
Vishal M. Patel
H. Roth
OOD
FedML
28
32
0
12 Mar 2022
No Free Lunch Theorem for Security and Utility in Federated Learning
Xiaojin Zhang
Hanlin Gu
Lixin Fan
Kai Chen
Qiang Yang
FedML
24
64
0
11 Mar 2022
Acceleration of Federated Learning with Alleviated Forgetting in Local Training
Chencheng Xu
Zhiwei Hong
Minlie Huang
Tao Jiang
FedML
29
46
0
05 Mar 2022
Privacy Leakage of Adversarial Training Models in Federated Learning Systems
Jingyang Zhang
Yiran Chen
Hai Helen Li
FedML
PICV
35
15
0
21 Feb 2022
LAMP: Extracting Text from Gradients with Language Model Priors
Mislav Balunović
Dimitar I. Dimitrov
Nikola Jovanović
Martin Vechev
27
57
0
17 Feb 2022
Practical Challenges in Differentially-Private Federated Survival Analysis of Medical Data
Shadi Rahimian
Raouf Kerkouche
I. Kurth
Mario Fritz
FedML
22
11
0
08 Feb 2022
Differentially Private Graph Classification with GNNs
Tamara T. Mueller
Johannes C. Paetzold
Chinmay Prabhakar
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
52
18
0
05 Feb 2022
Comparative assessment of federated and centralized machine learning
Ibrahim Abdul Majeed
Sagar Kaushik
Aniruddha Bardhan
Venkata Siva Kumar Tadi
Hwang-Ki Min
K. Kumaraguru
Rajasekhara Reddy Duvvuru Muni
FedML
31
6
0
03 Feb 2022
Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification
Yuxin Wen
Jonas Geiping
Liam H. Fowl
Micah Goldblum
Tom Goldstein
FedML
92
93
0
01 Feb 2022
Variational Model Inversion Attacks
Kuan-Chieh Jackson Wang
Yanzhe Fu
Ke Li
Ashish Khisti
R. Zemel
Alireza Makhzani
MIACV
25
95
0
26 Jan 2022
TOFU: Towards Obfuscated Federated Updates by Encoding Weight Updates into Gradients from Proxy Data
Isha Garg
M. Nagaraj
Kaushik Roy
FedML
31
1
0
21 Jan 2022
Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges
Nuria Rodríguez-Barroso
Daniel Jiménez López
M. V. Luzón
Francisco Herrera
Eugenio Martínez-Cámara
FedML
37
212
0
20 Jan 2022
Reconstructing Training Data with Informed Adversaries
Borja Balle
Giovanni Cherubin
Jamie Hayes
MIACV
AAML
50
159
0
13 Jan 2022
When Machine Learning Meets Spectrum Sharing Security: Methodologies and Challenges
Qun Wang
Haijian Sun
R. Hu
Arupjyoti Bhuyan
31
23
0
12 Jan 2022
Data-Free Knowledge Transfer: A Survey
Yuang Liu
Wei Zhang
Jun Wang
Jianyong Wang
37
48
0
31 Dec 2021
Challenges and Approaches for Mitigating Byzantine Attacks in Federated Learning
Junyu Shi
Wei Wan
Shengshan Hu
Jianrong Lu
L. Zhang
AAML
42
74
0
29 Dec 2021
Gradient Leakage Attack Resilient Deep Learning
Wenqi Wei
Ling Liu
SILM
PILM
AAML
27
47
0
25 Dec 2021
Sparsified Secure Aggregation for Privacy-Preserving Federated Learning
Irem Ergun
Hasin Us Sami
Başak Güler
FedML
41
26
0
23 Dec 2021
HarmoFL: Harmonizing Local and Global Drifts in Federated Learning on Heterogeneous Medical Images
Meirui Jiang
Zirui Wang
Qi Dou
FedML
33
123
0
20 Dec 2021
Robust and Privacy-Preserving Collaborative Learning: A Comprehensive Survey
Shangwei Guo
Xu Zhang
Feiyu Yang
Tianwei Zhang
Yan Gan
Tao Xiang
Yang Liu
FedML
31
9
0
19 Dec 2021
Location Leakage in Federated Signal Maps
Evita Bakopoulou
Justin Ley
Jiang Zhang
Konstantinos Psounis
A. Markopoulou
FedML
20
5
0
07 Dec 2021
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
30
5
0
01 Dec 2021
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning
Yangsibo Huang
Samyak Gupta
Zhao Song
Kai Li
Sanjeev Arora
FedML
AAML
SILM
31
269
0
30 Nov 2021
Differentially Private Federated Learning on Heterogeneous Data
Maxence Noble
A. Bellet
Aymeric Dieuleveut
FedML
13
102
0
17 Nov 2021
Privacy-preserving Federated Learning for Residential Short Term Load Forecasting
Joaquín Delgado Fernández
Sergio Potenciano Menci
Chul Min Lee
Gilbert Fridgen
33
53
0
17 Nov 2021
FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive Performance in Federated Learning
Yuezhou Wu
Yan Kang
Jiahuan Luo
Yuanqin He
Qiang Yang
FedML
AAML
19
69
0
16 Nov 2021
Federated Learning for Internet of Things: Applications, Challenges, and Opportunities
Tuo Zhang
Lei Gao
Chaoyang He
Mi Zhang
Bhaskar Krishnamachari
Salman Avestimehr
FedML
19
168
0
15 Nov 2021
Bayesian Framework for Gradient Leakage
Mislav Balunović
Dimitar I. Dimitrov
Robin Staab
Martin Vechev
FedML
27
41
0
08 Nov 2021
Privacy attacks for automatic speech recognition acoustic models in a federated learning framework
N. Tomashenko
Salima Mdhaffar
Marc Tommasi
Yannick Esteve
J. Bonastre
38
25
0
06 Nov 2021
Confidential Machine Learning Computation in Untrusted Environments: A Systems Security Perspective
Kha Dinh Duy
Taehyun Noh
Siwon Huh
Hojoon Lee
56
9
0
05 Nov 2021
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
41
71
0
27 Oct 2021
Previous
1
2
3
4
5
Next