ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.11593
  4. Cited By
Heavy-tailed Representations, Text Polarity Classification & Data
  Augmentation
v1v2 (latest)

Heavy-tailed Representations, Text Polarity Classification & Data Augmentation

25 March 2020
Hamid Jalalzai
Pierre Colombo
Chloé Clavel
Éric Gaussier
Giovanna Varni
Emmanuel Vignon
Anne Sabourin
ArXiv (abs)PDFHTML

Papers citing "Heavy-tailed Representations, Text Polarity Classification & Data Augmentation"

15 / 15 papers shown
Title
The importance of fillers for text representations of speech transcripts
The importance of fillers for text representations of speech transcripts
Tanvi Dinkar
Pierre Colombo
Matthieu Labeau
Chloé Clavel
129
24
0
23 Sep 2020
A Multivariate Extreme Value Theory Approach to Anomaly Clustering and
  Visualization
A Multivariate Extreme Value Theory Approach to Anomaly Clustering and Visualization
Maël Chiapino
Stephan Clémençon
Vincent Feuillard
Anne Sabourin
49
11
0
17 Jul 2019
Affect-Driven Dialog Generation
Affect-Driven Dialog Generation
Pierre Colombo
Wojciech Witon
Ashutosh Modi
J. Kennedy
Mubbasir Kapadia
154
112
0
04 Apr 2019
EDA: Easy Data Augmentation Techniques for Boosting Performance on Text
  Classification Tasks
EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks
Jason W. Wei
Kai Zou
119
1,962
0
31 Jan 2019
Deep $k$-Means: Jointly clustering with $k$-Means and learning
  representations
Deep kkk-Means: Jointly clustering with kkk-Means and learning representations
Maziar Moradi Fard
Thibaut Thonet
Éric Gaussier
64
239
0
26 Jun 2018
Autoencoding any Data through Kernel Autoencoders
Autoencoding any Data through Kernel Autoencoders
Pierre Laforgue
Stephan Clémençon
Florence dÁlché-Buc
16
20
0
28 May 2018
Contextual Augmentation: Data Augmentation by Words with Paradigmatic
  Relations
Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations
Sosuke Kobayashi
84
615
0
16 May 2018
Deep contextualized word representations
Deep contextualized word representations
Matthew E. Peters
Mark Neumann
Mohit Iyyer
Matt Gardner
Christopher Clark
Kenton Lee
Luke Zettlemoyer
NAI
233
11,566
0
15 Feb 2018
The Effectiveness of Data Augmentation in Image Classification using
  Deep Learning
The Effectiveness of Data Augmentation in Image Classification using Deep Learning
Luis Perez
Jason Wang
82
2,793
0
13 Dec 2017
Learning to Compose Domain-Specific Transformations for Data
  Augmentation
Learning to Compose Domain-Specific Transformations for Data Augmentation
Alexander J. Ratner
Henry R. Ehrenberg
Zeshan Hussain
Jared A. Dunnmon
Christopher Ré
70
350
0
06 Sep 2017
Automatic Detection of Fake News
Automatic Detection of Fake News
Verónica Pérez-Rosas
Bennett Kleinberg
Alexandra Lefevre
Rada Mihalcea
75
782
0
23 Aug 2017
Bag of Tricks for Efficient Text Classification
Bag of Tricks for Efficient Text Classification
Armand Joulin
Edouard Grave
Piotr Bojanowski
Tomas Mikolov
VLM
181
4,630
0
06 Jul 2016
Adversarial Autoencoders
Adversarial Autoencoders
Alireza Makhzani
Jonathon Shlens
Navdeep Jaitly
Ian Goodfellow
Brendan J. Frey
GAN
101
2,228
0
18 Nov 2015
A Diversity-Promoting Objective Function for Neural Conversation Models
A Diversity-Promoting Objective Function for Neural Conversation Models
Jiwei Li
Michel Galley
Chris Brockett
Jianfeng Gao
W. Dolan
149
2,402
0
11 Oct 2015
Sequence to Sequence Learning with Neural Networks
Sequence to Sequence Learning with Neural Networks
Ilya Sutskever
Oriol Vinyals
Quoc V. Le
AIMat
446
20,590
0
10 Sep 2014
1