ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.07631
  4. Cited By
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications

Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications

17 March 2020
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
    XAI
ArXivPDFHTML

Papers citing "Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications"

39 / 39 papers shown
Title
Reimagining Anomalies: What If Anomalies Were Normal?
Reimagining Anomalies: What If Anomalies Were Normal?
Philipp Liznerski
Saurabh Varshneya
Ece Calikus
Sophie Fellenz
Marius Kloft
33
4
0
22 Feb 2024
Towards Early Prediction of Human iPSC Reprogramming Success
Towards Early Prediction of Human iPSC Reprogramming Success
Abhineet Singh
I. Jasra
Omar Mouhammed
N. Dadheech
Nilanjan Ray
J. Shapiro
28
0
0
23 May 2023
Artificial intelligence to advance Earth observation: a perspective
Artificial intelligence to advance Earth observation: a perspective
D. Tuia
Konrad Schindler
Begum Demir
Gustau Camps-Valls
Xiao Xiang Zhu
...
Mihai Datcu
Jorge-Arnulfo Quiané-Ruiz
Volker Markl
Bertrand Le Saux
Rochelle Schneider
31
10
0
15 May 2023
Understanding and Unifying Fourteen Attribution Methods with Taylor
  Interactions
Understanding and Unifying Fourteen Attribution Methods with Taylor Interactions
Huiqi Deng
Na Zou
Mengnan Du
Weifu Chen
Guo-Can Feng
Ziwei Yang
Zheyang Li
Quanshi Zhang
FAtt
TDI
49
22
0
02 Mar 2023
Extractive Text Summarization Using Generalized Additive Models with
  Interactions for Sentence Selection
Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
Vinícius Camargo Da Silva
João Paulo Papa
K. Costa
18
1
0
21 Dec 2022
Explainable Analysis of Deep Learning Methods for SAR Image
  Classification
Explainable Analysis of Deep Learning Methods for SAR Image Classification
Sheng Su
Ziteng Cui
Weiwei Guo
Zenghui Zhang
Wenxian Yu
XAI
27
12
0
14 Apr 2022
Feature Visualization within an Automated Design Assessment leveraging
  Explainable Artificial Intelligence Methods
Feature Visualization within an Automated Design Assessment leveraging Explainable Artificial Intelligence Methods
Raoul Schönhof
Artem Werner
J. Elstner
Boldizsar Zopcsak
Ramez Awad
Marco F. Huber
AAML
8
12
0
28 Jan 2022
Negative Evidence Matters in Interpretable Histology Image
  Classification
Negative Evidence Matters in Interpretable Histology Image Classification
Soufiane Belharbi
M. Pedersoli
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
18
11
0
07 Jan 2022
Deep Learning and Earth Observation to Support the Sustainable
  Development Goals
Deep Learning and Earth Observation to Support the Sustainable Development Goals
Claudio Persello
Jan Dirk Wegner
Ronny Hansch
D. Tuia
Pedram Ghamisi
M. Koeva
Gustau Camps-Valls
26
4
0
21 Dec 2021
Evaluation of Interpretability for Deep Learning algorithms in EEG
  Emotion Recognition: A case study in Autism
Evaluation of Interpretability for Deep Learning algorithms in EEG Emotion Recognition: A case study in Autism
J. M. M. Torres
Sara E. Medina-DeVilliers
T. Clarkson
M. Lerner
Giuseppe Riccardi
22
34
0
25 Nov 2021
KML: Using Machine Learning to Improve Storage Systems
KML: Using Machine Learning to Improve Storage Systems
I. Akgun
A. S. Aydin
Andrew Burford
Michael McNeill
Michael Arkhangelskiy
Aadil Shaikh
L. Velikov
E. Zadok
11
1
0
22 Nov 2021
TorchEsegeta: Framework for Interpretability and Explainability of
  Image-based Deep Learning Models
TorchEsegeta: Framework for Interpretability and Explainability of Image-based Deep Learning Models
S. Chatterjee
Arnab Das
Chirag Mandal
Budhaditya Mukhopadhyay
Manish Vipinraj
Aniruddh Shukla
R. Rao
Chompunuch Sarasaen
Oliver Speck
A. Nürnberger
MedIm
29
14
0
16 Oct 2021
Logic Explained Networks
Logic Explained Networks
Gabriele Ciravegna
Pietro Barbiero
Francesco Giannini
Marco Gori
Pietro Lió
Marco Maggini
S. Melacci
25
69
0
11 Aug 2021
Entropy-based Logic Explanations of Neural Networks
Entropy-based Logic Explanations of Neural Networks
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
Pietro Lió
Marco Gori
S. Melacci
FAtt
XAI
21
78
0
12 Jun 2021
Understanding Neural Code Intelligence Through Program Simplification
Understanding Neural Code Intelligence Through Program Simplification
Md Rafiqul Islam Rabin
Vincent J. Hellendoorn
Mohammad Amin Alipour
AAML
43
58
0
07 Jun 2021
A General Taylor Framework for Unifying and Revisiting Attribution Methods
Huiqi Deng
Na Zou
Mengnan Du
Weifu Chen
Guo-Can Feng
Xia Hu
TDI
FAtt
36
2
0
28 May 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A
  Systematic Survey of Surveys on Methods and Concepts
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
26
184
0
15 May 2021
Mutual Information Preserving Back-propagation: Learn to Invert for
  Faithful Attribution
Mutual Information Preserving Back-propagation: Learn to Invert for Faithful Attribution
Huiqi Deng
Na Zou
Weifu Chen
Guo-Can Feng
Mengnan Du
Xia Hu
FAtt
18
6
0
14 Apr 2021
Towards a Collective Agenda on AI for Earth Science Data Analysis
Towards a Collective Agenda on AI for Earth Science Data Analysis
D. Tuia
R. Roscher
Jan Dirk Wegner
Nathan Jacobs
Xiaoxiang Zhu
Gustau Camps-Valls
AI4CE
39
68
0
11 Apr 2021
Evaluating explainable artificial intelligence methods for multi-label
  deep learning classification tasks in remote sensing
Evaluating explainable artificial intelligence methods for multi-label deep learning classification tasks in remote sensing
Ioannis Kakogeorgiou
Konstantinos Karantzalos
XAI
23
118
0
03 Apr 2021
Towards a mathematical framework to inform Neural Network modelling via
  Polynomial Regression
Towards a mathematical framework to inform Neural Network modelling via Polynomial Regression
Pablo Morala
Jenny Alexandra Cifuentes
R. Lillo
Iñaki Ucar
17
34
0
07 Feb 2021
Towards Robust Explanations for Deep Neural Networks
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
13
62
0
18 Dec 2020
Deep Interpretable Classification and Weakly-Supervised Segmentation of
  Histology Images via Max-Min Uncertainty
Deep Interpretable Classification and Weakly-Supervised Segmentation of Histology Images via Max-Min Uncertainty
Soufiane Belharbi
Jérôme Rony
Jose Dolz
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
6
52
0
14 Nov 2020
Exemplary Natural Images Explain CNN Activations Better than
  State-of-the-Art Feature Visualization
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
36
7
0
23 Oct 2020
Geometric Disentanglement by Random Convex Polytopes
Geometric Disentanglement by Random Convex Polytopes
M. Joswig
M. Kaluba
Lukas Ruff
19
3
0
29 Sep 2020
A Unifying Review of Deep and Shallow Anomaly Detection
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
18
779
0
24 Sep 2020
MeLIME: Meaningful Local Explanation for Machine Learning Models
MeLIME: Meaningful Local Explanation for Machine Learning Models
T. Botari
Frederik Hvilshoj
Rafael Izbicki
A. Carvalho
AAML
FAtt
20
16
0
12 Sep 2020
Langevin Cooling for Domain Translation
Langevin Cooling for Domain Translation
Vignesh Srinivasan
Klaus-Robert Muller
Wojciech Samek
Shinichi Nakajima
41
1
0
31 Aug 2020
A Unified Taylor Framework for Revisiting Attribution Methods
A Unified Taylor Framework for Revisiting Attribution Methods
Huiqi Deng
Na Zou
Mengnan Du
Weifu Chen
Guo-Can Feng
Xia Hu
FAtt
TDI
29
21
0
21 Aug 2020
Explainable Deep One-Class Classification
Explainable Deep One-Class Classification
Philipp Liznerski
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Marius Kloft
Klaus-Robert Muller
13
198
0
03 Jul 2020
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining
  Neural Networks
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
19
31
0
16 Jun 2020
Rethinking Assumptions in Deep Anomaly Detection
Rethinking Assumptions in Deep Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
14
89
0
30 May 2020
On the Explanation of Machine Learning Predictions in Clinical Gait
  Analysis
On the Explanation of Machine Learning Predictions in Clinical Gait Analysis
D. Slijepcevic
Fabian Horst
Sebastian Lapuschkin
Anna-Maria Raberger
Matthias Zeppelzauer
Wojciech Samek
C. Breiteneder
W. Schöllhorn
B. Horsak
22
50
0
16 Dec 2019
Physically Interpretable Neural Networks for the Geosciences:
  Applications to Earth System Variability
Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability
B. Toms
E. Barnes
I. Ebert‐Uphoff
AI4CE
23
213
0
04 Dec 2019
Deep Weakly-Supervised Learning Methods for Classification and
  Localization in Histology Images: A Survey
Deep Weakly-Supervised Learning Methods for Classification and Localization in Histology Images: A Survey
Jérôme Rony
Soufiane Belharbi
Jose Dolz
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
25
70
0
08 Sep 2019
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,235
0
24 Jun 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
228
1,835
0
03 Feb 2017
Deep image mining for diabetic retinopathy screening
Deep image mining for diabetic retinopathy screening
G. Quellec
K. Charrière
Yassine Boudi
B. Cochener
M. Lamard
MedIm
34
413
0
22 Oct 2016
Classifying and Segmenting Microscopy Images Using Convolutional
  Multiple Instance Learning
Classifying and Segmenting Microscopy Images Using Convolutional Multiple Instance Learning
Oren Z. Kraus
Lei Jimmy Ba
B. Frey
161
392
0
17 Nov 2015
1