Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.07631
Cited By
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
17 March 2020
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications"
39 / 39 papers shown
Title
Reimagining Anomalies: What If Anomalies Were Normal?
Philipp Liznerski
Saurabh Varshneya
Ece Calikus
Sophie Fellenz
Marius Kloft
33
4
0
22 Feb 2024
Towards Early Prediction of Human iPSC Reprogramming Success
Abhineet Singh
I. Jasra
Omar Mouhammed
N. Dadheech
Nilanjan Ray
J. Shapiro
28
0
0
23 May 2023
Artificial intelligence to advance Earth observation: a perspective
D. Tuia
Konrad Schindler
Begum Demir
Gustau Camps-Valls
Xiao Xiang Zhu
...
Mihai Datcu
Jorge-Arnulfo Quiané-Ruiz
Volker Markl
Bertrand Le Saux
Rochelle Schneider
31
10
0
15 May 2023
Understanding and Unifying Fourteen Attribution Methods with Taylor Interactions
Huiqi Deng
Na Zou
Mengnan Du
Weifu Chen
Guo-Can Feng
Ziwei Yang
Zheyang Li
Quanshi Zhang
FAtt
TDI
49
22
0
02 Mar 2023
Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
Vinícius Camargo Da Silva
João Paulo Papa
K. Costa
16
1
0
21 Dec 2022
Explainable Analysis of Deep Learning Methods for SAR Image Classification
Sheng Su
Ziteng Cui
Weiwei Guo
Zenghui Zhang
Wenxian Yu
XAI
25
12
0
14 Apr 2022
Feature Visualization within an Automated Design Assessment leveraging Explainable Artificial Intelligence Methods
Raoul Schönhof
Artem Werner
J. Elstner
Boldizsar Zopcsak
Ramez Awad
Marco F. Huber
AAML
8
12
0
28 Jan 2022
Negative Evidence Matters in Interpretable Histology Image Classification
Soufiane Belharbi
M. Pedersoli
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
18
11
0
07 Jan 2022
Deep Learning and Earth Observation to Support the Sustainable Development Goals
Claudio Persello
Jan Dirk Wegner
Ronny Hansch
D. Tuia
Pedram Ghamisi
M. Koeva
Gustau Camps-Valls
26
4
0
21 Dec 2021
Evaluation of Interpretability for Deep Learning algorithms in EEG Emotion Recognition: A case study in Autism
J. M. M. Torres
Sara E. Medina-DeVilliers
T. Clarkson
M. Lerner
Giuseppe Riccardi
17
34
0
25 Nov 2021
KML: Using Machine Learning to Improve Storage Systems
I. Akgun
A. S. Aydin
Andrew Burford
Michael McNeill
Michael Arkhangelskiy
Aadil Shaikh
L. Velikov
E. Zadok
11
1
0
22 Nov 2021
TorchEsegeta: Framework for Interpretability and Explainability of Image-based Deep Learning Models
S. Chatterjee
Arnab Das
Chirag Mandal
Budhaditya Mukhopadhyay
Manish Vipinraj
Aniruddh Shukla
R. Rao
Chompunuch Sarasaen
Oliver Speck
A. Nürnberger
MedIm
26
14
0
16 Oct 2021
Logic Explained Networks
Gabriele Ciravegna
Pietro Barbiero
Francesco Giannini
Marco Gori
Pietro Lió
Marco Maggini
S. Melacci
25
69
0
11 Aug 2021
Entropy-based Logic Explanations of Neural Networks
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
Pietro Lió
Marco Gori
S. Melacci
FAtt
XAI
21
78
0
12 Jun 2021
Understanding Neural Code Intelligence Through Program Simplification
Md Rafiqul Islam Rabin
Vincent J. Hellendoorn
Mohammad Amin Alipour
AAML
41
58
0
07 Jun 2021
A General Taylor Framework for Unifying and Revisiting Attribution Methods
Huiqi Deng
Na Zou
Mengnan Du
Weifu Chen
Guo-Can Feng
Xia Hu
TDI
FAtt
31
2
0
28 May 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
21
184
0
15 May 2021
Mutual Information Preserving Back-propagation: Learn to Invert for Faithful Attribution
Huiqi Deng
Na Zou
Weifu Chen
Guo-Can Feng
Mengnan Du
Xia Hu
FAtt
18
6
0
14 Apr 2021
Towards a Collective Agenda on AI for Earth Science Data Analysis
D. Tuia
R. Roscher
Jan Dirk Wegner
Nathan Jacobs
Xiaoxiang Zhu
Gustau Camps-Valls
AI4CE
39
68
0
11 Apr 2021
Evaluating explainable artificial intelligence methods for multi-label deep learning classification tasks in remote sensing
Ioannis Kakogeorgiou
Konstantinos Karantzalos
XAI
23
118
0
03 Apr 2021
Towards a mathematical framework to inform Neural Network modelling via Polynomial Regression
Pablo Morala
Jenny Alexandra Cifuentes
R. Lillo
Iñaki Ucar
17
34
0
07 Feb 2021
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
13
62
0
18 Dec 2020
Deep Interpretable Classification and Weakly-Supervised Segmentation of Histology Images via Max-Min Uncertainty
Soufiane Belharbi
Jérôme Rony
Jose Dolz
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
6
52
0
14 Nov 2020
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
34
7
0
23 Oct 2020
Geometric Disentanglement by Random Convex Polytopes
M. Joswig
M. Kaluba
Lukas Ruff
17
3
0
29 Sep 2020
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
18
779
0
24 Sep 2020
MeLIME: Meaningful Local Explanation for Machine Learning Models
T. Botari
Frederik Hvilshoj
Rafael Izbicki
A. Carvalho
AAML
FAtt
20
16
0
12 Sep 2020
Langevin Cooling for Domain Translation
Vignesh Srinivasan
Klaus-Robert Muller
Wojciech Samek
Shinichi Nakajima
36
1
0
31 Aug 2020
A Unified Taylor Framework for Revisiting Attribution Methods
Huiqi Deng
Na Zou
Mengnan Du
Weifu Chen
Guo-Can Feng
Xia Hu
FAtt
TDI
27
21
0
21 Aug 2020
Explainable Deep One-Class Classification
Philipp Liznerski
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Marius Kloft
Klaus-Robert Muller
13
198
0
03 Jul 2020
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
16
31
0
16 Jun 2020
Rethinking Assumptions in Deep Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
14
89
0
30 May 2020
On the Explanation of Machine Learning Predictions in Clinical Gait Analysis
D. Slijepcevic
Fabian Horst
Sebastian Lapuschkin
Anna-Maria Raberger
Matthias Zeppelzauer
Wojciech Samek
C. Breiteneder
W. Schöllhorn
B. Horsak
22
50
0
16 Dec 2019
Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability
B. Toms
E. Barnes
I. Ebert‐Uphoff
AI4CE
23
213
0
04 Dec 2019
Deep Weakly-Supervised Learning Methods for Classification and Localization in Histology Images: A Survey
Jérôme Rony
Soufiane Belharbi
Jose Dolz
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
23
70
0
08 Sep 2019
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,235
0
24 Jun 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
226
1,835
0
03 Feb 2017
Deep image mining for diabetic retinopathy screening
G. Quellec
K. Charrière
Yassine Boudi
B. Cochener
M. Lamard
MedIm
34
413
0
22 Oct 2016
Classifying and Segmenting Microscopy Images Using Convolutional Multiple Instance Learning
Oren Z. Kraus
Lei Jimmy Ba
B. Frey
161
392
0
17 Nov 2015
1